首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microprobe analyses of the major silicates in Clovis (no. 1), New Mexico, establish it as an H3 chondrite. Inclusions identified in Clovis are: breccia fragments; angular and vesicular chondrule or rock fragments composed almost entirely of glass and olivine (Fa12–22); chondrules, composed principally of pyroxene (Fs2–33) and olivine (Fa1–28); and Ca, Al and Ti-rich inclusions. These refractory enriched inclusions, similar in composition to those found in some carbonaceous chondrites, are rare in ordinary chondrites but in this study were observed in Sharps, Virginia (H3), Gobabeb, South Africa (H4), Dimmitt, Texas (H4), Weston, Connecticut (H4–6) and Clovis. Sodium, known to rim similar inclusions in carbonaceous chondrites, also occurs in the interiors of inclusions observed in this study, sometimes in moderate amounts. The Na distribution is regarded as primary and is not attributable, at least in total, to secondary Na extraction from the host matrix.  相似文献   

2.
Abstract— Bencubbin is an unclassified meteorite breccia which consists mainly of host silicate (~40 vol.%) and host metal (~60%) components. Rare (< 1%) ordinary chondrite clasts and a dark xenolith (formerly called a carbonaceous chondrite clast) are also found. A petrologic study of the host silicates shows that they have textures, modes, mineralogy and bulk compositions that are essentially the same as that of barred olivine (BO) chondrules, and they are considered to be BO chondritic material. Bulk compositions of individual host silicate clasts are identical and differ only in their textures which are a continuum from coarsely barred, to finely barred, to feathery microcrystalline; these result from differing cooling rates. The host silicates differ from average BO chondrules only in being angular clasts rather than fluid droplet-shaped objects, and in being larger in size (up to 1 cm) than most chondrules; but large angular to droplet-shaped chondrules occur in many chondrites. Bencubbin host metallic FeNi clasts have a positive Ni-Co trend, which coincides with that of a calculated equilibrium nebular condensation path. This appears to indicate a chondritic, rather than impact, origin for this component as well. The rare ordinary chondrite clast and dark xenolith also contain FeNi metal with compositions similar to that of the host metal. Two scenarios are offered for the origin of the Bencubbin breccia. One is that the Bencubbin components are chondritic and were produced in the solar nebula. Later brecciation, reaggregation and minor melting of the chondritic material resulted in it becoming a monomict chondritic breccia. The alternative scenario is that the Bencubbin components formed as a result of major impact melting on a chondritic parent body; the silicate fragments were formed from an impact-induced lava flow and are analogous to the spinifex-textured rocks characteristic of terrestrial komatiites. Both scenarios have difficulties, but the petrologic, chemical and isotopic data are more consistent with Bencubbin being a brecciated chondrite. Bencubbin has a number of important chemical and isotopic characteristics in common with the major components in the CR (Renazzo-type) chondrites and the unique ALH85085 chondrite, which suggests that their major components may be related. These include: (1) Mafic silicates that are similarly Mg-rich and formed in similar reducing environments. (2) Similarly low volatiles; TiO2, Al2O3 and Cr2O3 contents are also similar. (3) Similar metallic FeNi compositions that sharply differ from those in other chondrites. (4) Remarkable enrichments in 15N. (5) Similar oxygen isotopic compositions that lie on the same mixing line. Thus, the major components of the Bencubbin breccia are highly similar to those of the ALH85085 and CR chondrites and they may have all formed in the same isotopic reservoir, under similar conditions, in the CR region of the solar nebula.  相似文献   

3.
4.
Abstract— Twenty-two carbonaceous chondrite clasts from the two howardites Bholghati and EET87513 were analyzed. Clast N from EET87513 is a fragment classified as CM2 material on the basis of texture, bulk composition, mineralogy, and bulk O isotopic composition. Carbonaceous chondrite clasts from Bholghati, for which less data are available because of their small size, can be divided into two petrologic types: C1 and C2. C1 clasts are composed of opaque matrix with rare coarse-grained silicates as individual mineral fragments; textures resemble CI meteorites and some dark inclusions from CR meteorites. Opaque matrix is predominantly composed of flaky saponite; unlike typical CI and CR meteorites, serpentine is absent in the samples we analyzed. C2 clasts contain chondrules, aggregates, and individual fragments of coarse-grained silicates in an opaque matrix principally composed of saponite and anhydrous ferromagnesian silicates with flaky textures similar to phyllosilicates. These anhydrous ferromagnesian silicates are interpreted as the product of heating of pre-existing serpentine. The carbonaceous chondrite clasts we have studied from these two howardites are, with one notable exception (clast N from EET87513), mineralogically distinct from typical carbonaceous chondrites. However, these clasts have very close affinities to carbonaceous chondrites and have also experienced thermal metamorphism and aqueous alteration, but to different degrees.  相似文献   

5.
Abstract— Rumuruti chondrites (R chondrites) constitute a well‐characterized chondrite group different from carbonaceous, ordinary, and enstatite chondrites. Many of these meteorites are breccias containing primitive type 3 fragments as well as fragments of higher petrologic type. Ca,Al‐rich inclusions (CAIs) occur within all lithologies. Here, we present the results of our search for and analysis of Al‐rich objects in Rumuruti chondrites. We studied 20 R chondrites and found 126 Ca,Al‐rich objects (101 CAIs, 19 Al‐rich chondrules, and 6 spinel‐rich fragments). Based on mineralogical characterization and analysis by SEM and electron microprobe, the inclusions can be grouped into six different types: (1) simple concentric spinel‐rich inclusions (42), (2) fassaite‐rich spherules, (3) complex spinel‐rich CAIs (53), (4) complex diopside‐rich inclusions, (5) Al‐rich chondrules, and (6) Al‐rich (spinel‐rich) fragments. The simple concentric and complex spinel‐rich CAIs have abundant spinel and, based on the presence or absence of different major phases (fassaite, hibonite, Na,Al‐(Cl)‐rich alteration products), can be subdivided into several subgroups. Although there are some similarities between CAIs from R chondrites and inclusions from other chondrite groups with respect to their mineral assemblages, abundance, and size, the overall assemblage of CAIs is distinct to the R‐chondrite group. Some Ca,Al‐rich inclusions appear to be primitive (e.g., low FeO‐contents in spinel, low abundances of Na,Al‐(Cl)‐rich alteration products; abundant perovskite), whereas others were highly altered by nebular and/or parent body processes (e.g., high concentrations of FeO and ZnO in spinel, ilmenite instead of perovskite, abundant Na,Al‐(Cl)‐rich alteration products). There is complete absence of grossite and melilite, which are common in CAIs from most other groups. CAIs from equilibrated R‐chondrite lithologies have abundant secondary Ab‐rich plagioclase (oligoclase) and differ from those in unequilibrated type 3 lithologies which have nepheline and sodalite instead.  相似文献   

6.
Abstract– Northwest Africa 5492 is a new metal‐rich chondrite breccia that may represent a new oxygen reservoir and new chondrite parent body. It has some textural similarities to CB and CH chondrites, but silicates are more reduced, sulfides are more common and not associated with metal, and metal compositions differ from CB and CH chondrites. Oxygen isotope ratios indicate that Northwest Africa (NWA) 5492 components (chondrules and lithic fragments) formed in at least two different oxygen reservoirs. The more common, and presumably host, component plots in a region above the terrestrial fractionation line, below ordinary chondrite compositions, and just above enstatite chondrites in 3‐oxygen space. The only other chondritic materials that plot in this region are chondrules from the Grosvenor Mountains (GRO) 95551 ungrouped metal‐rich chondrite. The other rare component plots near the CR, CB, and CH chondrites. Based on petrologic characteristics and oxygen isotopic compositions, NWA 5492 appears to be related to the ungrouped metal‐rich GRO 95551 chondrite.  相似文献   

7.
Abstract— Calcium, aluminum-rich inclusions (CAIs) are characteristic components in carbonaceous chondrites. Their mineralogy is dominated by refractory oxides and silicates like corundum, perovskite, spinel, hibonite, melilite, and Ca-pyroxene, which are predicted to be the first phases to have condensed from the cooling solar nebula. Allowing insights into processes occurring in the early solar system, CAIs in carbonaceous and ordinary chondrites were studied in great detail, whereas only a few refractory inclusions were found and studied in stratospheric interplanetary dust particles (IDPs) and micrometeorites. This study gives a summary of all previous studies on refractory inclusions in stratospheric IDPs and micrometeorites and will present new data on two Antarctic micrometeorites. The main results are summarized as follows: (a) Eight stratospheric IDPs and six micrometeorites contain Ca, Al-rich inclusions or refractory minerals. The constituent minerals include spinel, perovskite, fassaite, hibonite, melilite, corundum, diopside and anorthite. (b) Four of the seven obtained rare-earth-element (REE) patterns from refractory objects in stratospheric IDPs and micrometeorites are related to Group III patterns known from refractory inclusions from carbonaceous chondrites. A Group II related pattern was found for spinel and perovskite in two micrometeorites. The seventh REE pattern for an orthopyroxene is unique and can be explained by fractionation of Gd, Lu, and Tb at highly reducing conditions. (c) The O-isotopic compositions of most refractory objects in stratospheric IDPs and micrometeorites are similar to those of constituents from carbonaceous chondrites and fall on the carbonaceous chondrites anhydrous minerals mixing line. In fact, in most cases, in terms of mineralogy, REE pattern and O-isotopic composition of refractory inclusions in stratospheric IDPs and micrometeorites are in good agreement with a suggested genetic relation of dust particles and carbonaceous chondrites. Only in the case of one Antarctic micrometeorite does the REE pattern obtained for an orthopyroxene point to a link of this particle to enstatite chondrites.  相似文献   

8.
Abstract— Rumuruti (R) chondrites constitute a new, well‐established chondrite group different from the carbonaceous, ordinary, and enstatite chondrites. Many of these samples are gas‐rich regolith breccias showing the typical light‐dark structure and consist of abundant fragments of various parent‐body lithologies embedded in a fine‐grained olivine‐rich matrix. Unequilibrated type‐3 lithologies among these fragments have frequently been mentioned in various publications. In this study, detailed mineralogical data on seven primitive fragments from the R‐chondrites Dar al Gani 013 and Hughes 030 are presented. The fragments range from ~300 μ in size up to several millimeters. Generally, the main characteristics can be summarized as follows: (1) Unequilibrated type‐3 fragments have a well‐preserved chondritic texture with a chondrule‐to‐matrix ratio of ~1:1. Chondrules and chondrule fragments are embedded in a fine‐grained olivine‐rich matrix. Thus, the texture is quite similar to that of type‐3 carbonaceous chondrites. (2) In all cases, matrix olivines in type‐3 fragments have a significantly higher Fa content (44–57 mol%) than olivines in other (equilibrated) lithologies (38–40 mol% Fa). (3) Olivines and pyroxenes occurring within chondrules or as fragments are highly variable in composition (Fa0–65 and Fs0–33, respectively) and, generally, more magnesian than those found in equilibrated R chondrites. Agglomerated material of the R‐chondrite parent body (or bodies) was highly unequilibrated. It is suggested that the material that accreted to form the parent body consisted of chondrules and chondrule fragments, mainly having Mg‐rich silicate constituents, and Fe‐rich highly oxidized fine‐grained materials. The dominating phase of this fine‐grained material may have been Fa‐rich olivine from the beginning. The brecciated whole rocks, the R‐chondrite regolith breccias, were not significantly reheated subsequent to brecciation or during lithification, as indicated by negligible degree of equilibration between matrix components and Mg‐rich olivines and pyroxenes in primitive type‐3 fragments.  相似文献   

9.
Abstract– Xenoliths are inclusions of a given meteorite group embedded in host meteorites of a different group. Xenoliths with dimensions between a few μm and about 1 mm (microxenoliths) are “meteorite‐trapped” analogues of micrometeorites collected on the Earth. However, they have the unique features of sampling the zodiacal cloud (1) at more ancient times than those sampled by micrometeorites and (2) at larger distances from the Sun (corresponding to the asteroid Main Belt) than that sampled by micrometeorites (1 AU). Herein we describe a systematic search for new xenoliths and microxenoliths in H chondrites, aimed at determining their abundance in these ordinary chondrites, analyzing their mineralogy, and searching for possible correlations with host meteorite properties. Sixty‐six sections from 40 meteorites have been analyzed. Twenty‐four new xenoliths have been discovered. About 87% of them are microxenoliths (i.e., <1 mm), only three are >1 mm in their largest dimension. All the newly discovered xenoliths and microxenoliths are composed of carbonaceous chondritic material. Hence, the zodiacal cloud was dominated by carbonaceous material even in past epochs. All the new xenoliths and microxenoliths have been found in regolith breccias. Hydrous‐phase‐rich xenoliths and microxenoliths in H4 and H5 chondrites attest that their embedding happened after the end of the thermal metamorphism. All these data suggest that xenoliths and microxenoliths were embedded when their host meteorites were part of the parent body regolith. This, combined with the H chondrite impact age distribution, attests that the embedding may have happened as early as 3.5 Gyr ago.  相似文献   

10.
Abstract— In this paper we report petrological and chemical data of the unusual chondritic meteorites Yamato (Y)‐792947, Y‐93408 and Y‐82038. The three meteorites are very similar in texture and chemical composition, suggesting that they are pieces of a single fall. The whole‐rock oxygen isotopes and the chemical compositions are indicative of H chondrites. In addition, the mineralogy, and the abundances of chondrule types, opaque minerals and matrices suggest that these meteorites are H3 chondrites. They were hardly affected by thermal and shock metamorphism. The degree of weathering is very low. We conclude that these are the most primitive H chondrites, H3.2–3.4 (S1), known to date. On the other hand, these chondrites contain extraordinarily high amounts of refractory inclusions, intermediate between those of ordinary and carbonaceous chondrites. The distribution of the inclusions may have been highly heterogeneous in the primitive solar nebula. The mineralogy, chemistry and oxygen isotopic compositions of inclusions studied here are similar to those in CO and E chondrites.  相似文献   

11.
Abstract— The ten specimens of the paired Acfer 059/El Djouf 001 CR2 chondrite contain abundant lithic fragments which we refer to as dark clasts. Petrological and mineralogical studies reveal that they are not related to the CR2 host meteorite but are similar to dark clasts in other CR2 chondrites. Dark clasts consist of chondrule and mineral fragments, phyllosilicate fragments and clusters, magnetite, sulfides and accessory phases, embedded into a very fine-grained, phyllosilicate-rich matrix. Magnetite has morphologies known from CI chondrites: spherules, framboids and platelets. Average abundances of major elements in the dark clasts are mostly in the range of both CR and CV chondrites, but strong depletions in Na and S are apparent. Oxygen isotopic compositions of two dark clasts suggest relationships to type 3 carbonaceous chondrites and dark inclusions in Allende. The dark clasts are clearly different in texture and mineralogical composition from the host matrix of Acfer 059/El Djouf 001. Therefore, these dark clasts are xenoliths and are quite unlike the Acfer 059/El Djouf 001 CR2 host meteorite. We suggest that dark clasts accreted at the same time with all other components during the formation of Acfer 059/El Djouf 001 whole rock.  相似文献   

12.
Abstract— We studied the petrography, mineralogy, bulk chemical, I-Xe, and O-isotopic compositions of three dark inclusions (E39, E53, and E80) in the reduced CV3 chondrite Efremovka. They consist of chondrules, calcium-aluminum-rich inclusions (CAIs), and fine-grained matrix. Primary minerals in chondrules and CAIs are pseudomorphed to various degrees by a mixture largely composed of abundant (>95%), fine-grained (>0.2 μm) fayalitic olivine (Fa35–42) and minor amounts of chlorite, poorly-crystalline Si-Al-rich material, and chromite; chondrule and CAI shapes and textures are well-preserved. Secondary Ca-rich minerals (Ti-andradite, kirschsteinite, Fe-diopside) are common in chondrule pseudomorphs and matrices in E39 and E80. The degree of replacement increases from E53 to E39 to E80. Fayalitic olivines are heavily strained and contain abundant voids similar to those in incompletely dehydrated phyllosilicates in metamorphosed CM and CI chondrites. Opaque nodules in chondrules consist of Ni- and Co-rich taenite, Co-rich kamacite, and wairauite; sulfides are rare; magnetite is absent. Bulk O-isotopic compositions of E39 and E53 plot in the field of aqueously altered CM chondrites, close to the terrestrial fractionation line; the more heavily altered E39 is isotopically heavier than the less altered E53. The apparent I-Xe age of E53 is 5.4 Ma earlier than Bjurböle and 5.7 ± 2.0 Ma earlier than E39. The I-Xe data are consistent with the most heavily altered dark inclusion, E39 having experienced either longer or later alteration than E53. Bulk lithophile elements in E39 and E53 most closely match those of CO chondrites, except that Ca is depleted and K and As are enriched. Both inclusions are depleted in Se by factors of 3–5 compared to mean CO, CV, CR, or CK chondrites. Zinc in E39 is lower than the mean of any carbonaceous chondrite groups, but in E53 Zn is similar to the means in CO, CV, and CK chondrites. The Efremovka dark inclusions experienced various degrees of aqueous alteration, followed by low degree thermal metamorphism in an asteroidal environment. These processes resulted in preferential oxidation of Fe from opaque nodules and formation of Ni- and Co-rich metal, metasomatic alteration of primary minerals in chondrules and CAIs, and the formation of fayalitic olivine and secondary Ca-Fe-rich minerals. Based on the observed similarities of the alteration mineralization in the Efremovka and Allende dark inclusions, we infer that the latter may have experienced similar alteration processes.  相似文献   

13.
Abstract– Nineteen nonporphyritic pyroxene and pyroxene/olivine chondrules, chondrule fragments, and irregular objects were studied from two equilibrated chondrites, the ordinary (L/LL5) Knyahinya chondrite and the Rumuruti type (R4) Ouzina chondrite. Major element contents for almost all objects in the chondrites are disturbed from their chondritic ratios, most probably during metamorphic re‐equilibration. However, the volatile elements (Na2O + K2O) in Ouzina scatter around the CI line, probably the result of being generated and/or processed in different environments as compared with those for Knyahinya. All studied objects from Knyahinya and Ouzina possess systematically fractionated trace element abundances. Depletion of LREE with respect to HREE and ultra‐refractory HFSE documents variable degrees of LREE transport into an external mineral sink and restricted mobility of most of the HREE and HFSE. Moderately volatile elements preserve volatility‐controlled abundances. Strongly fractionated Rb/Cs ratios (up to 10× CI) in all studied objects suggest restricted mobility of the large Cs ion. All studied objects sampled and preserved Y and Ho in solar proportions, a feature that they share with the nonporphyritic chondrules of unequilibrated ordinary chondrites.  相似文献   

14.
Abstract– We have examined Fe/Mn systematics of 34 type IIA chondrules in eight highly unequilibrated CO, CR, and ordinary chondrites using new data from this study and prior studies from our laboratory. Olivine grains from type IIA chondrules in CO chondrites and unequilibrated ordinary chondrites (UOC) have significantly different Fe/Mn ratios, with mean molar Fe/Mn = 99 and 44, respectively. Olivine analyses from both these chondrite groups show well‐defined trends in Mn versus Fe (afu) and molar Fe/Mn versus Fe/Mg diagrams. In general, type IIA chondrules in CR chondrites have properties intermediate between those in UOC and CO chondrites. In most UOC and CR type IIA chondrules, the Fe/Mn ratio of olivine decreases during crystallization, whereas in CO chondrites the Fe/Mn ratio does not appear to change. It is difficult to interpret the observed Fe/Mn trends in terms of differing moderately volatile element depletions inherited from precursor materials. Instead, we suggest that significant differences in the abundances of silicates and sulfides ± metals in the precursor material, as well as open‐system behavior during chondrule formation, were responsible for establishing the different Fe/Mn trends. Using Fe‐Mn‐Mg systematics, we are able to identify relict grains in type IIA chondrules, which could be derived from previous generations of chondrules, including chondrules from other chondrite groups, and possibly chondritic reservoirs that have not been sampled previously.  相似文献   

15.
Dar al Gani (DaG) 978 is an ungrouped type 3 carbonaceous chondrite. In this study, we report the petrography and mineralogy of Ca,Al‐rich inclusions (CAI), amoeboid olivine aggregates (AOAs), chondrules, mineral fragments, and the matrix in DaG 978. Twenty‐seven CAIs were found: 13 spinel‐diopside‐rich inclusions, 2 anorthite‐rich inclusions, 11 spinel‐troilite‐rich inclusions, and 1 spinel‐melilite‐rich inclusion. Most CAIs have a layered texture that indicates a condensation origin and are most similar to those in R chondrites. Compound chondrules represent a high proportion (approximately 8%) of chondrules in DaG 978, which indicates a local dusty chondrule‐forming region and multiple heating events. Most spinel and olivine in DaG 978 are highly Fe‐rich, which corresponds to a petrologic type of >3.5 and a maximum metamorphic temperature of approximately 850–950 K. This conclusion is also supported by other observations in DaG 978: the presence of coarse inclusions of silicate and phosphate in Fe‐Ni metal, restricted Ni‐Co distributions in kamacite and taenite, and low S concentrations in the matrix. Mineralogic records of iron‐alkali‐halogen metasomatism, such as platy and porous olivine, magnetite, hedenbergite, nepheline, Na‐rich in CAIs, and chlorapatite, are present, but relatively limited, in DaG 978. The fine‐grained, intergrowth texture of spinel‐troilite‐rich inclusions was probably formed by reaction between pre‐existing Al‐rich silicates and shock‐induced, high‐temperature S‐rich gas on the surface of the parent body of DaG 978. A shock‐induced vein is present in the matrix of DaG 978, which indicates that the parent body of DaG 978 at least experienced a shock event with a shock stage up to S3.  相似文献   

16.
Abstract— We report detailed chemical, petrological, and mineralogical studies on the Ningqiang carbonaceous chondrite. Ningqiang is a unique ungrouped type 3 carbonaceous chondrite. Its bulk composition is similar to that of CV and CK chondrites, but refractory lithophile elements (1.01 × CI) are distinctly depleted relative to CV (1.29 × CI) and CK (1.20 × CI) chondrites. Ningqiang consists of 47.5 vol% chondrules, 2.0 vol% Ca,Al‐rich inclusions (CAIs), 4.5 vol% amoeboid olivine aggregates (AOAs), and 46.0 vol% matrix. Most chondrules (95%) in Ningqiang are Mg‐rich. The abundances of Fe‐rich and Al‐rich chondrules are very low. Al‐rich chondrules (ARCs) in Ningqiang are composed mainly of olivine, plagioclase, spinel, and pyroxenes. In ARCs, spinel and plagioclase are enriched in moderately volatile elements (Cr, Mn, and Na), and low‐Ca pyroxenes are enriched in refractory elements (Al and Ti). The petrology and mineralogy of ARCs in Ningqiang indicate that they were formed from hybrid precursors of ferromagnesian chondrules mixed with refractory materials during chondrule formation processes. We found 294 CAIs (55.0% type A, 39.5% spinel‐pyroxene‐rich, 4.4% hibonite‐rich, and several type C and anorthite‐spinel‐rich inclusions) and 73 AOAs in 15 Ningqiang sections (equivalent to 20 cm2surface area). This is the first report of hibonite‐rich inclusions in Ningqiang. They are texturally similar to those in CM, CH, and CB chondrites, and exhibit three textural forms: aggregates of euhedral hibonite single crystals, fine‐grained aggregates of subhedral hibonite with minor spinel, and hibonite ± Al,Ti‐diopside ± spinel spherules. Evidence of secondary alteration is ubiquitous in Ningqiang. Opaque assemblages, formed by secondary alteration of pre‐existing alloys on the parent body, are widespread in chondrules and matrix. On the other hand, nepheline and sodalite, existing in all chondritic components, formed by alkali‐halogen metasomatism in the solar nebula.  相似文献   

17.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

18.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

19.
The CB (Bencubbin-like) metal-rich carbonaceous chondrites are subdivided into the CBa and CBb subgroups. The CBa chondrites are composed predominantly of ~cm-sized skeletal olivine chondrules and unzoned Fe,Ni-metal ± troilite nodules. The CBb chondrites are finer grained than the CBas and consist of chemically zoned and unzoned Fe,Ni-metal grains, Fe,Ni-metal ± troilite nodules, cryptocrystalline and skeletal olivine chondrules, and rare refractory inclusions. Both subgroups contain exceptionally rare porphyritic chondrules and no interchondrule fine-grained matrix, and are interpreted as the products of a gas–melt impact plume formed by a high-velocity collision between differentiated planetesimals about 4562 Ma. The anomalous metal-rich carbonaceous chondrites, Fountain Hills and Sierra Gorda 013 (SG 013), have bulk oxygen isotopic compositions similar to those of other CBs but contain coarse-grained igneous clasts/porphyritic chondrule-like objects composed of olivine, low-Ca-pyroxene, and minor plagioclase and high-Ca pyroxene as well as barred olivine and skeletal olivine chondrules. Cryptocrystalline chondrules, zoned Fe,Ni-metal grains, and interchondrule fine-grained matrix are absent. In SG 013, Fe,Ni-metal (~80 vol%) occurs as several mm-sized nodules; magnesiochromite (Mg-chromite) is accessory; daubréelite and schreibersite are minor; troilite is absent. In Fountain Hills, Fe,Ni-metal (~25 vol%) is dispersed between chondrules and silicate clasts; chromite and sulfides are absent. In addition to a dominant chondritic lithology, SG 013 contains a chondrule-free lithology composed of Fe,Ni-metal nodules (~25 vol%), coarse-grained olivine and low-Ca pyroxene, interstitial high-Ca pyroxene and anorthitic plagioclase, and Mg-chromite. Here, we report on oxygen isotopic compositions of olivine, low-Ca pyroxene, and ±Mg-chromite in Fountain Hills and both lithologies of SG 013 measured in situ using an ion microprobe. Oxygen isotope compositions of olivine, low-Ca pyroxene, and Mg-chromite in these meteorites are similar to those of magnesian non-porphyritic chondrules in CBa and CBb chondrites: on a three-isotope oxygen diagram (δ17O vs. δ18O), they plot close to a slope-1 (primitive chondrule mineral) line and have a very narrow range of Δ17O (=δ17O–0.52 × δ18O) values, −2.5 ± 0.9‰ (avr ± 2SD). No isotopically distinct relict grains have been identified in porphyritic chondrule-like objects. We suggest that magnesian non-porphyritic (barred olivine, skeletal olivine, cryptocrystalline) chondrules in the CBas, CBbs, and porphyritic chondrule-like objects in SG 013 and Fountain Hills formed in different zones of the CB impact plume characterized by variable pressure, temperature, cooling rates, and redox conditions. The achondritic lithology in SG 013 represents fragments of one of the colliding bodies and therefore one of the CB chondrule precursors. Fountain Hills was subsequently modified by impact melting; Fe,Ni-metal and sulfides were partially lost during this process.  相似文献   

20.
Abstract— Previous studies of unmelted micrometeorites (>50 μm) recovered from Antarctic ice have concluded that chondrules, which are a major component of chondritic meteorites, are extremely rare among micrometeorites. We report the discovery of eight micrometeorites containing chondritic igneous objects, which strongly suggests that at least a portion of coarse‐grained crystalline micrometeorites represent chondrule fragments. Six of the particles are identified as composite micrometeorites that contain chondritic igneous objects and fine‐grained matrix. These particles suggest that at least some coarse‐grained micrometeorites (cgMMs) may be derived from the same parent bodies as fine‐grained micrometeorites. The new evidence indicates that, contrary to previous suggestions, the parent bodies of micrometeorites broadly resemble the parent asteroids of chondrulebearing carbonaceous chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号