首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

2.
The Ashmore olivine-bronzite chondrite is a group H, type 5 stone which differs from other H5 chondrites mainly in its higher proportion of chromite (0.9 wt %) and in the relatively lower iron and higher magnesium content of the chromite. The modal proportions of opaque phases were obtained by point-counting in reflected light, and the modal proportions of nonopaque silicate phases in the matrix were estimated from traverses of a selected small area by electron microprobe. The consistency between the bulk chemical analysis and the chemical composition calculated from the modal mineral proportions implies that the bulk silicate composition of the chondrules is very similar to that of the silicate matrix and suggests a common source for both chondrules and matrix.  相似文献   

3.
The Kyle, Texas, U.S.A., chondrite was identified in 1965. Electron microprobe analyses and microscopic examination show the following mineralogy: olivine (Fa 26.2 mole %), orthopyroxene (Fs 21.0 mole %), clinopyroxene, plagioclase (An 10.3 mole %), chlorapatite, whitlockite, kamacite, taenite, troilite, chromite, and an iron-bearing terrestrial weathering product. Eutectic intergrowths of metaltroilite and a brecciated matrix indicate that the Kyle chondrite was shocked. Recrystallization and shock have obliterated chondrule-matrix boundaries. A chemical analysis of the meteorite shows the following results (in weight %): Fe 0.38, Ni 1.22, Co 0.05, FeS 5.98, SiO2 38.41, TiO2 0.11, Al2O3 2.13, Cr2O3 0.55, Fe2O3 8.02, FeO 14.83, MnO 0.31, MgO 23.10, CaO 1.60, Na2O 0.74, K2O 0.08, P2O5 0.19, H2O+ 1.73, H2O? 0.37, C 0.03, Sum 99.83. On the basis of bulk chemistry, composition of olivine and orthopyroxene, and the recrystallized matrix, the Kyle meteorite is classified as an L6 chondrite.  相似文献   

4.
The meteorite which fell near Messina, Italy, on 16 July 1955 is a typical olivine-hypersthene (L-group) chondrite. Its mineralogical composition is: olivine (Fa24), orthopyroxene (Fs20) with some polysynthetically twinned clynopyroxene, plagioclase (An10) and merrillite. Opaque phases present are: copper, kamacite, taenite, plessite, chalcopyrrhotite, mackinawite, troilite and chromite. The stone contains abundant chondrules. The matrix consists chiefly of broken chondrules with tiny fragments of crystals and rare amorphous material. Chondrules form more than 42% of the meteorite by volume. Some unusual features of the fabric of this meteorite include silicate grains showing deformation; silicates with fusion spots of dark glass containing blebs of metallic iron; iron and troilite with marginal fusion yielding globules and droplets sometimes showing flow structures. The classification of this chondrite is confirmed by bulk chemical analysis.  相似文献   

5.
The Kamiomi, Sashima-gun (Iwai-shi), Ibaraki-ken, Japan, chondrite (observed to fall in spring, during the period 1913–6), consists of olivine, orthopyroxene, nickel-iron and troilite with minor amount of plagioclase, clinopyroxene, apatite and chromite. The average molar composition of olivine (Fa19) and orthopyroxene (Fs17) indicates that Kamiomi is a typical olivine bronzite chondrite. From the well-recrystallized texture, the presence of poorly-definable chondrules, homogeneous composition of olivine and absence of glass, this chondrite could be classified in petrologic type 5. The bulk chemical composition, especially, total Fe (27.33%) and metallic Fe (17.00%) as well as Fetotal/SiO2(0.72), Femetal/Fetotal (0–633) and SiO2/MgO (1.59) support the above conclusion. Coexistence of heavily-shocked olivine grains in the matrix composed of olivines and pyroxenes which suffered from light to moderate shock effect suggest that impacting phenomena, small-scaled but locally strong, occurred on the Kamiomi parent body.  相似文献   

6.
The Conquista chondrite consists of major olivine, low-Ca pyroxene (both ortho- and twinned clino-), troilite and metallic nickel-iron; minor glassy to microcrystalline material and pigeonite; and accessory chromite, high-Ca clinopyroxene and hydrous ferric oxides that formed by terrestrial weathering of metallic nickel-iron. Results of microscopic, electron microprobe, and bulk chemical studies, particularly the compositions of olivine (Fa17.2) and low-Ca pyroxene (Fs15.4); the contents of metallic nickel-iron (18.5%) and total iron (25.83%); and the ratios of Fe°/Fetotal (0.64), Fe°/Ni° (9.59) and Fetotal/SiO2 (0.69) indicate H-group classification. The pronounced, well-developed chondritic texture; the slight compositional variations in constituent phases; the high Ca contents of pyroxene and the presence of pigeonite, glassy to microcrystalline interstitial material rich in alkalis and SiO2, and of twinned low-Ca clinopyroxene suggest that Conquista is of petrologic type 4.  相似文献   

7.
A meteorite, named for the location of its discovery near Lone Tree, Iowa, was found by Loren Westfall in May 1971. Electron microprobe and petrographic studies reveal its mineral composition to be olivine, low-calcium clinopyroxene, high-calcium clinopyroxene, troilite, kamacite, taenite and iron oxides. On the basis of texture, olivine composition (19% Fa), low-calcium clinopyroxene composition (17% Fs, 2% Wo) and metal (determined by modal analysis), this meteorite is classified as an H group bronzite chondrite. While it has characteristics of classes 3 and 4 (Van Schmus and Wood, 1967, Table 2) it fits class 4 better since low-calcium pyroxene has a MD of 5.6%, olivine has a MD of 3.2%, turbid glass is present in chondrules, feldspar is absent, and the matrix is opaque. The opacity of the matrix may be due to iron oxides in microfractures in a microcrystalline matrix.  相似文献   

8.
The Putinga, Rio Grande do Sul, chondrite (fall, August 16, 1937), consists of major olivine (Fa24.8), orthopyroxene (Fs21.3), and metallic nickel-iron (kamacite, taenite, and plessite); minor maskelynite (Ab81.0An12.4Or6.6) and troilite; and accessory chromite (Cm79.0Uv8.2Pc1.8Sp11.0) and whitlockite. Mineral compositions, particularly of olivine and orthorhombic pyroxene, as well as the bulk chemical composition, particularly the ratios of Fe°/Ni° (5.24), Fetotal/SiO2 (0.58), and Fe°/Fetotal (0.27), and the contents of Fetotal (22.42%) and total metallic nickel-iron (7.25%) classify the meteorite as an L-group chondrite. The highly recrystallized texture of the stone, with well-indurated, poorly discernible chondrules; xenomorphic, well-crystallized groundmass olivine and pyroxene; and the occurrence of poikilitic intergrowth of olivine in orthopyroxene suggest that Putinga belongs to petrologic type 6. Maskelynite of oligoclase composition was formed by solid state shock transformation of previously existing well-crystallized plagioclase at estimated shock pressures of about 250–350 kbar. Thus, recrystallization (i.e., formation of well-crystallized oligoclase) must have preceded shock transformation into maskelynite.  相似文献   

9.
Microscopic and electron microprobe studies indicate that the Garraf meteorite is a highly-recrystallized chondrite of petrologic type 6. Olivine (Fa24.7; PMD 1.1) and low-Ca pyroxene (Fs20.9; PMD 1.1) compositions indicate that it belongs to the L-group. Based on contents of noble gases, pervasive fracturing of silicates, common undulose extinction of olivine and plagioclase, and the lack of melt pockets and maskelynite, we place Garraf into shock facies b. We conclude that Garraf is a highly recrystallized L6b chondrite that, after recrystallization, was cataclased and comminuted by shock.  相似文献   

10.
The only two Nakhlite meteorites, Nakhla and Lafayette, are identical in mineral composition, consisting of augite (Wo39En38Fs23), olivine (Fo32–35), plagioclase (An27), K-feldspar (Or75Ab22An3), titaniferous magnetite with exsolved ilmenite, iddingsite (?), and minor amounts of fluor-chlorapatite, FeS, pyrite, chalcopyrite, and K-rich glass. The texture is suggestive of a cumulative origin.  相似文献   

11.
Six fragments of the Barwise meteorite were analyzed for REE and eleven other elements (Al, Ca, Mg, Mn, Na, K, Cr, Fe, Co, Ni and Ba). In addition, two fragments were analyzed for Si and Mg. The chondrite-normalized REE patterns of six fragments studied show interesting systematic variations. Three fragments with relatively high La abundances show a negative Ce anomaly. Since the meteorite in question is a find, it could be suspected that the observed REE fractionations are due to terrestrial contamination. To examine this point, a soil sample from the find site was also analyzed for REE and major chemical elements. It is considered that several facts, especially, the relationships between La and SiO2 and between SiO2 and MgO, suggest the pre-terrestrial fractionation rather than the terrestrial contamination. Unexpectedly, it is shown that the REE fractionation observed in the investigated fragments correlates with the metal-silicate and the Fe-Co-Ni fractionations. In this connection, large metal grains were investigated for Fe, Co and Ni contents. A suggestion is presented that this chondrite was formed through the melting of the surface of a planetesimal and the subsequent collision, although the possibility of terrestrial contamination might not be ruled out.  相似文献   

12.
Yilmia, a new enstatite chondrite contains moderately well defined radiating and granular chondrules. The plagioclase to enstatite ratio is appreciably higher within than outside of the two granular chondrules in our microprobe sections. Osbornite was observed within the granular chondrules, but not in the rayed chondrules or surrounding matrix Major phases include enstatite, plagioclase (Ab80 An16 Or4), silica, silicon-rich kamacite and titanian troilite. Minor phases are many and varied: sinoite, silicon-rich taenite, schreibersite, graphite, osbornite, oldhamite, “normal” and zincian daubreelite, ferroan alabandite and a new FeZnMn monosulfide The new mineral (Fe.538 Zn.246 Mn.159 Mg.004 S) closely resembles albandite and could easily have been overlooked in other meteorites unless a microprobe was used. A new form of oldhamite was also found. Indarch oldhamite, analyzed for comparative purposes, consists of two similar but distinct species: Ca.96 Mn.005 Mg.04 Fe.01 S and Ca1.000 Mn.004 Mg.02 Fe.005 S. These have not been reported from other meteorites Based on its mineralogy and texture this is a type II (E6) enstatite chondrite that is transitional toward the intermediate type (E5). It is unique in its mineralogical complexity, abundance of taenite, diversity of zincian minerals and monosulfides, and restriction of osbornite to certain chondrules  相似文献   

13.
14.
Gobabeb, an ordinary chondrite, was found near Gobabeb, South West Africa in 1969. Chemically and petrographically it belongs in the H4 group. But, in addition to almost homogeneous silicates and chromites, it contains rare, non-opaque spinels that vary greatly in composition from grain to grain. A similar association in an “almost equilibrated” portion of the Mezö-Madaras chondrite has been interpreted as evidence against the hypothesized metamorphic homogenization of ordinary chondrites. A comparison of the chromites and variable spinels from Mezö-Madaras and Gobabeb suggests, instead, that cation exchange is simply slower in the variable spinels than in the chromites. Based on the evidence to date, the survival of these highly variable spinels is not incompatible with a metamorphic episode for both these meteorites.  相似文献   

15.
A brilliant smoking meteor appeared in a clear sky in bright sunlight at 11 a.m., July 24, 1922 near Wynyard, Saskatchewan, Canada. The sight and thunderous sounds were witnessed by many hundreds of people in the rural district but no craters or meteorites were found at that time. Investigation and interviews with surviving witnesses in 1981 indicated a defined area near Big Quill Lake in which a meteorite may have fallen. Field investigation led to the Wynyard meteorite which had been found by a farmer sometime in the late 1960's at 104° 11'W 51°33'N. The Wynyard meteorite is a chondrite weighing 3.5 kg. It is moderately weathered and it may or may not have been part of the 1922 fall.  相似文献   

16.
The Homewood meteorite is a slightly weathered find of 325 grams discovered in 1970 about 64 km southwest of Winnipeg, Manitoba. It consists of olivine (Fa25.4; 43.8 normative wt. percent), orthopyroxene (Fs23.3; 28.5 percent), kamacite and taenite (7.5 percent), troilite (5.6 percent), maskelynite (8.3 percent), chromite (1.0 percent), whitlockite (0.7 percent) and minor patchy Ca pyroxene. Bulk chemical analysis yielded Fetotal 21.60 wt. percent, Fe/SiO20.55, SiO2/MgO 1.53 and FeO/Fetotal 0.29. Barred olivine, radiating pyroxene and porphyritic chondrules, all with ill-defined outlines, occur in the meteorite. Most chemical and mineralogical features characterize the Homewood meteorite as an L6 (hypersthene) chondrite. The presence of maskelynite, the undulatory extinction, extensive fracturing and pervasive mosaicism of olivine, and the poor definition of chondrule outlines suggest that the Homewood meteorite has been shocked in the range of 300–350 kbar.  相似文献   

17.
The Benares meteorite is an LL4 chondrite, not LL6 as recorded in the literature. Some specimens labelled Benares are misidentified.  相似文献   

18.
The Alta'ameem hypersthene chondrite is a light gray brecciated and metamorphosed meteorite composed mainly of olivine (27% Fa), orthopyroxene (24.5% Fs) and plagioclase (An10). Other minerals include troilite, kamacite, taenite, chromite, ilmenite, clinopyroxene, chalcopyrite, and apatite or merrillite. The mineralogical and chemical analyses suggest that the Alta'ameem meteorite belongs to the amphoterite group of chondrites. The chemical composition includes the following: Fe 3.39, Ni 1.13, Co 0.05, Cu 0.01, FeS 6.48, SiO2 39.48, TiO2 0.28, Al2O3 2.25, FeO 16.46, MnO 0.40, MgO 25.66, CaO 1.47, Na2O 1.05, K2O 0.15, P2O5 0.47, Cr2O3 0.45; total 99.18.  相似文献   

19.
Nine, possibly ten, stones from northwestern Missouri are known as the Faucett meteorite. These stones are finds, but may be fragments of a large fireball seen in the area in 1907. The meteorite is an olivine-bronzite chondrite (H4) containing approximately 31% chondrules and 69% matrix. Modal analysis gives: olivine 43%, orthopyroxene 28.3%, oligoclase 5.9%, glass 1.2%, metallic grains (both nickel-iron and troilite) 19.7%, other minerals and unidentified grains 2.0%. The chemical analysis is typical of modern analyses of H-group chondrites with a total iron value of 26.59 weight percent.  相似文献   

20.
The Galatia meteorite was found in August, 1971, approximately 7 km ENE of Galatia, Barton County, Kansas (98° 53′W., 38° 39.5′N). The single stone weighed 23.9 kg and is partially weathered. Olivine (Fa24.9) and pyroxene (Fs20.9) compositions indicate L-group classification, and textural observations indicate that the stone is of petrologic type 6. Galatia is similar in many respects to the Otis L6 chondrite (found 20 km to the west), but it does not have the brecciated structure of Otis and, thus, it is not part of the same fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号