首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

2.
Abstract– The collection of approximately 3300 meteorites from the Queen Alexandra Range (QUE) area, Antarctica, is dominated by more than 2000 chondrites classified as either L5 or LL5. Based on concentrations of the cosmogenic radionuclides 10Be, 26Al, 36Cl, and 41Ca in the metal and stone fraction of 16 QUE L5 or LL5 chondrites, we conclude that 13 meteorites belong to a single meteorite shower, QUE 90201, with a large preatmospheric size and a terrestrial age of 125 kyr. Members of this shower have properties typical of L (e.g., pyroxene composition) and LL chondrites (e.g., metal abundance and composition), as well as properties intermediate between the L and LL groups (e.g., olivine composition), and is thus best described as an L/LL5 chondrite. Based on comparison with model calculations, the measured radionuclide concentrations in the metal and stone fractions of QUE 90201 indicate irradiation in an object with a preatmospheric radius of approximately 150 cm, representing one of the largest chondrites known so far. Based on the abundance of small L5 and LL5 chondrites at QUE and their distinct mass distribution, we conclude that the QUE 90201 shower includes up to 2000 fragments with a total recovered mass of 60–70 kg, <1% of the preatmospheric mass of approximately 50,000 kg. The mass distribution of the QUE 90201 shower suggests that the meteoroid experienced catastrophic atmospheric fragmentation(s), either because it was a fragile object or it had a high entry velocity.  相似文献   

3.
Electron microprobe analyses and petrographic observations demonstrate that Almelo Township (L6), Beeler (LL6), Kalvesta (H4), Phillips County (L6), and Yocemento (L5) are typical ordinary chondrites. Selden has abnormally iron-rich silicates and nickel-rich metal, and it may have been a lower petrologic type that has been shocked to an LL5. Shielding corrected exposure ages range from 0.80 m.y. (Kalvesta) to 47.0 m.y. (Yocemento).  相似文献   

4.
Petrographic measures of disequilibrium in the ALHA 77278 chondrite indicate that this meteorite is more equilibrated than its exceptionally high volatile element contents suggest. Based on its metal compositions, this meteorite should be classified as an LL3 rather than an L3 chondrite.  相似文献   

5.
Abstract– Larkman Nunatak (LAR) 06299 is a vesicular LL chondrite impact melt breccia that cooled rapidly (0.1–0.3 °C s?1) during crystallization. Ar‐Ar data from the literature indicate that the impact event that formed this rock occurred approximately 1 Ga ago. About 30 vol% of the meteorite consists of a melt matrix containing faceted and intergrown mafic silicate grains (mainly 4–11 μm size olivine phenocrysts) partially to completely surrounded by 2–20 μm size patches of plagioclase. Suspended in the melt are 30–370 μm size ellipsoidal to spheroidal metal‐sulfide nodules (several hundred per thin section), many connected to 8–600 μm size ellipsoidal to spheroidal vesicles. Most of the metal‐sulfide nodules contain a large oblate metallic Fe‐Ni bleb at one end of the nodule. For approximately 90% of the nodules, the metal blebs are aligned on the same side of the nodules; for approximately 80% of the nodules that are adjacent to vesicles, the vesicles are attached to the opposite end of the nodules from the oblate metal blebs. Most of the oblate metal blebs themselves are flattened in a direction perpendicular to the long axis of the nodule/vesicle. These features result from alignment in the gravitational field on the LL parent asteroid, making LAR 06299 the first known chondrite to indicate gravitational direction. Using reasonable estimates of the cooling rate, viscosity of the metal‐sulfide melt, and asteroid density, as well as the observed sizes of constituent phases in LAR 06299, we obtain a lower limit of approximately 1.5 km for the radius of the LAR 06299 parent body. The body was probably substantially larger.  相似文献   

6.
Abstract— Galim is a polymict breccia consisting of a heavily shocked (shock stage S6) LL6 chondrite, Galim (a), and an impact-melted EH chondrite, Galim (b). Relict chondrules in Galim (b) served as nucleation sites for euhedral enstatite grains crystallizing from the impact melt. Many of the reduced phases typical of EH chondrites (e.g., Si-bearing metallic Fe-Ni; Ti-bearing troilite) are absent. Galim (b) was probably shock-melted while in contact with a more oxidized source, namely, Galim (a); during this event, Si was oxidized from the metal and Ti was oxidized from troilite. Galim (a) contains shock veins and recrystallized, unzoned olivine. The absence of evidence for reduction in Galim (a) may indicate that the amount of LL material greatly exceeded that of EH material; shock metamorphism may have taken place on the LL parent body. Shock-induced redox reactions such as those inferred for the Galim breccia appear to be restricted mainly to asteroids because the low-end tail of their relative-velocity distribution permits mixing of intact disparate materials (including accretion of projectiles of different oxidation states), whereas the peak of the distribution leads to high equilibration shock pressures (allowing impact-induced exchange between previously accreted, disequilibrated materials). Galim probably formed by a two-stage process: (1) accretion to the LL parent body of an intact EH projectile at low relative velocities, and (2) shock metamorphism of the assemblage by the subsequent impact of another projectile at significantly higher relative velocities.  相似文献   

7.
Abstract— Chondrules are generally believed to have lost most or all of their trapped noble gases during their formation. We tested this assumption by measuring He, Ne, and Ar in chondrules of the carbonaceous chondrites Allende (CV3), Leoville (CV3), Renazzo (CR2), and the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1). Additionally, metalsulfide‐rich chondrule coatings were measured that probably formed from chondrule metal. Low primordial 20Ne concentrations are present in some chondrules, while even most of them contain small amounts of primordial 36Ar. Our preferred interpretation is that‐in contrast to CAIs‐the heating of the chondrule precursor during chondrule formation was not intense enough to expel primordial noble gases quantitatively. Those chondrules containing both primordial 20Ne and 36Ar show low presolar‐diamond‐like 36Ar/20Ne ratios. In contrast, the metal‐sulfide‐rich coatings generally show higher gas concentrations and Q‐like 36Ar/20Ne ratios. We propose that during metalsilicate fractionation in the course of chondrule formation, the Ar‐carrying phase Q became enriched in the metal‐sulfide‐rich chondrule coatings. In the silicate chondrule interior, only the most stable Ne‐carrying presolar diamonds survived the melting event leading to the low observed 36Ar/20Ne ratios. The chondrules studied here do not show evidence for substantial amounts of fractionated solar‐type noble gases from a strong solar wind irradiation of the chondrule precursor material as postulated by others for the chondrules of an enstatite chondrite.  相似文献   

8.
Abstract Dahmani is a shocked LL6 fragmental breccia. According to the composition of the silicates (olivine Fa30,32.6, orthopyroxene Fs24.5–26.3) and of the metal (a 60% Ni taenite) it is one of the most oxidised known.  相似文献   

9.
Here we characterize the magnetic properties of the Chelyabinsk chondrite (LL5, S4, W0) and constrain the composition, concentration, grain size distribution, and mineral fabric of the meteorite's magnetic mineral assemblage. Data were collected from 10 to 1073 K and include measurements of low‐field magnetic susceptibility (χ0), the anisotropy of χ0, hysteresis loops, first‐order reversal curves, Mössbauer spectroscopy, and X‐ray microtomography. The REM and REM′ paleointensity protocols suggest that the only magnetizations recorded by the chondrite are components of the Earth's magnetic field acquired during entry into our planet's atmosphere. The Chelyabinsk chondrite consists of light and dark lithologies. Fragments of the light lithology show logχ0 = 4.57 ± 0.09 (s.d.) (= 135), while the dark lithology shows 4.65 ± 0.09 (= 39) (where χ0 is in 10?9 m3 kg?1). Thus, Chelyabinsk is three times more magnetic than the average LL5 fall, but is similar to a subgroup of metal‐rich LL5 chondrites (Paragould, Aldsworth, Bawku, Richmond) and L/LL5 chondrites (Glanerbrug, Knyahinya). The meteorite's room‐temperature magnetization is dominated by multidomain FeNi alloys taenite and kamacite (no tetrataenite is present). However, below approximately 75 K remanence is dominated by chromite. The metal contents of the light and dark lithologies are 3.7 and 4.1 wt%, respectively, and are based on values of saturation magnetization.  相似文献   

10.
Platinum group element (PGE) concentrations have been determined in situ in ordinary chondrite kamacite and taenite grains via laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). Results demonstrate that PGE concentrations in ordinary chondrite metal (kamacite and taenite) are similar among the three ordinary chondrite groups, in contrast to previous bulk metal studies in which PGE concentrations vary in the order H < L < LL. PGE concentrations are higher in taenite than kamacite, consistent with preferential PGE partitioning into taenite. PGE concentrations vary between and within metal grains, although average concentrations in kamacite broadly agree with results from bulk studies. The variability of PGE concentrations in metal decreases with increasing petrologic type; however, variability is still evident in most type six ordinary chondrites, suggesting that equilibration of PGEs does not occur between metal grains, but rather within individual metal grains via self‐diffusion during metamorphism. The constant average PGE concentrations within metal grains across different ordinary chondrite groups are consistent with the formation of metal via nebular condensation prior to the accretion of ordinary chondrite parent bodies. Post‐condensation effects, including heating during chondrule‐formation events, may have affected some element ratios, but have not significantly affected average metal PGE concentrations.  相似文献   

11.
Abstract— We present a detailed petrographic and electron microprobe study of metal grains and related opaque minerals in the chondrule interiors and rims of the Bishunpur (LL3.1) ordinary chondrite. There are distinct differences between metal grains that are completely encased in chondrule interiors and those that have some portion of their surface exposed outside of the chondrule boundary, even though the two types of metal grains can be separated by only a few microns. Metal grains in chondrule interiors exhibit minor alteration in the form of oxidized P‐, Cr‐, and Si‐bearing minerals. Metal grains at chondrule boundaries and in chondrule rims are extensively altered into troilite and fayalite. The results of this study suggest that many metal grains in Bishunpur reacted with a type‐I chondrule melt and incorporated significant amounts of P, Cr, and Si. As the system cooled, some metal oxidation occurred in the chondrule interior, producing metal‐associated phosphate, chromite, and silica. Metal that migrated to chondrule boundaries experienced extensive corrosion as a result of exposure to the external atmosphere present during chondrule formation. It appears that chondrule‐derived metal and its corrosion products were incorporated into the fine‐grained rims that surround many type‐I chondrules, contributing to their Fe‐rich compositions. We propose that these fine‐grained rims formed by a combination of corrosion of metal expelled from the chondrule interior and accretion of fine‐grained mineral fragments and microchondrules.  相似文献   

12.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

13.
Chondrule K7p from LL3.0 Semarkona consists of four nested barred‐olivine (BO) chondrules. The innermost BO chondrule (chondrule 1) formed by complete melting of an olivine‐rich dustball. After formation, the chondrule was incorporated into another olivine‐rich dustball. A second heating event caused this second dustball to melt; the mesostasis and some of the olivine in chondrule 1 were probably also melted at this time, but the chondrule 1 structure remained largely intact. At this stage, the object was an enveloping compound BO chondrule. This two‐step process of melting and dustball enshrouding repeated two more times. The different proportions of olivine and glass in chondrules 1–4 suggest that the individual precursor dustballs differed in the amounts of chondrule fragments they contained and the mineral proportions in those fragments. The final dustball (which ultimately formed chondrule 4) was somewhat more ferroan; after melting, crystallizing, and quenching, chondrule 4 contained olivine and glass with higher FeO and MnO contents than those of the earlier formed chondrules. Subsequent aqueous alteration on the LL parent body transformed the abundant metal blebs and stringers at the chondrule surface into carbide, iron oxide, and minor Ni‐rich metal. Portions of the mesostasis underwent dissolution, producing holes and adjacent blades of more resistant material. Much of the glass in the chondrule remained isotropic, even after minor hydration and leaching. The sharp, moderately lobate boundary between the extensively altered mesostasis and the isotropic glass represents the reaction front beyond which there was little or no glass dissolution.  相似文献   

14.
Abstract— Richfield is a moderately shocked (shock stage S4) LL3.7 genomict breccia find consisting mainly of light-colored recrystallized clasts and dark clasts exhibiting significant silicate darkening; a few impact-melt-rock clasts and LL5 chondrite clasts also occur. The cosmic-ray exposure age of 14.5 Ma is indistinguishable from the main exposure peak for LL chondrites (15 Ma). Although the exposure ages indicate little He loss, the gas-retention ages indicate high gas losses that must have occurred prior to or during ejection from the LL parent body.  相似文献   

15.
Abstract– The Hayabusa mission recently returned the first samples from an ordinary chondrite (OC) parent body. Olivine, low‐Ca pyroxene, and kamacite compositions fall within the known ranges of minerals from LL4 to LL6 chondrites. Hayabusa samples are being processed and stored in a pure N2 atmosphere. However, during recovery, prior to receiving, and during preliminary examination, some Hayabusa samples were briefly exposed to terrestrial atmosphere. Some of the minerals already identified in the Hayabusa samples (olivine, sulfides) are known to be among the most vulnerable to weathering reactions in moist, oxidizing terrestrial environments. Oxidation of Fe in metal, sulfides, and ferrous silicates is ubiquitous in naturally weathered OC finds, in samples of falls subjected to even a few decades of weathering before recovery, and in OC falls recovered and curated promptly after recovery. All prerecovery oxidation, hydrolysis, hydration, and product‐forming phenomena documented to affect OC finds have been documented to continue in OC samples in curatorial and laboratory settings, producing mineralogical and textural effects at scales easily discernable by electron microscopy, on timescales of decades. Hayabusa samples will be exposed to similar terrestrial conditions at times throughout sample processing, allocation, and examination. Maximizing the science yield from these important samples requires thorough understanding of how LL chondrite minerals like those in the Hayabusa samples react with terrestrial moisture and oxidants in support of proper planning for maintaining Hayabusa sample integrity after allocation, and for proper anticipation of the effects of inevitable exposure to Earth’s atmosphere during storage and examination in terrestrial analytical laboratories.  相似文献   

16.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

17.
We analyzed the speed (v) distributions of 11584 coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph Experiment on board the Solar and Heliospheric Observatory (SOHO/LASCO) in cycle 23 from 1996 to 2006. We find that the speed distributions for high-latitude (HL) and low-latitude (LL) CME events are nearly identical and to a good approximation they can be fitted with a lognormal distribution. This finding implies that statistically the same driving mechanism of a nonlinear nature is acting in both HL and LL CME events, and CMEs are intrinsically associated with the source's magnetic structure on large spatial scales. Statistically, the HL CMEs are slightly slower than the LL CMEs. For HL and LL CME events respectively, the speed distributions for accelerating and decelerating events are nearly identical and also to a good approximation they can be both fitted with a lognormal distribution, thus supplementing the results obtained by Yurchyshyn et al.  相似文献   

18.
Abstract— We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high‐resolution synchrotron X‐ray microtomography (μCT) and helium pycnometry. We found total porosities ranging from ~10 to 20% within these chondrites, and with μCT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1‐S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not “fluffed” on their parent body by impact‐related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.  相似文献   

19.
Cover          下载免费PDF全文
X‐ray map of a thin section of a sample of the Chelyabinsk meteorite from the study of Righter et al. (pp. 1790–1819). Sample Chel‐102 contains roughly 50 modal% of a dark lithology that is shock‐darkened LL5 chondrite (left side of image). There is heavy veining of this portion, and very little original equilibrated chondritic texture remaining. The other 50% of Chel‐102 (right side of image) is a very fi ne‐grained melt breccia comprised of mesostasis (85%), metal‐troilite droplets (5%), and chondritic fragments of similar mineralogy to the light lithology of Chel‐101. Image produced by Eve. L. Berger.  相似文献   

20.
In this study, the three‐dimensional (3‐D) microstructure of 48 Itokawa regolith particles was examined by synchrotron microtomography at SPring‐8 during the preliminary examination of Hayabusa samples. Moreover, the 3‐D microstructure of particles collected from two LL6 chondrites (Ensisheim and Kilabo meteorites) and an LL5 chondrite (Tuxtuac meteorite) was investigated by the same method for comparison. The modal abundances of minerals, especially olivine, bulk density, porosity, and grain size are similar in all samples, including voids and cracks. These results show that the Itokawa particles, which are surface materials from the S‐type asteroid Itokawa, are consistent with the LL chondrite materials in terms of not only elemental and isotopic composition of the minerals but also 3‐D microstructure. However, we could not determine whether the Itokawa particles are purely LL5, LL6, or a mixture of the two. No difference between the particles collected from Rooms A and B of the sample chamber, corresponding to the sampling sequence of the spacecraft's second and first touchdowns, respectively, was detected because of the statistically small amount of particles from Room B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号