首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Sittampundi and Bhavani Archean layered meta-anorthosite complexes occur as tectonic lenses within the Cauvery shear zone (CSZ), a crustal scale shear dividing the Precambrian granulite crust of south India into late Archean (> 2.5 Ga) and Proterozoic (c. 0.55 Ga) blocks. They and their host supracrustal-gneiss rocks record at least two stages of tectonometamorphic history. The first is seen as regional scale refolded isoclinal folds and granulite metamorphism (D1-M1) while the second stage is associated with dominantly E–W dextral transcurrent shearing and metamorphic recrystallisation (D2-MCSZ). Whole rock Sm-Nd isochrons for several comagmatic rocks of the layered complexes yield concordant ages: Sittampundi – 2935±60 Ma, ɛNd + 1.85±0.16 and Bhavani – 2899±28 Ma, ɛNd + 2.18±0.14 (2σ errors). Our Sm-Nd results suggest that: (1) the magmatic protoliths of the Sittampundi and Bhavani layered complexes were extracted from similar uniform and LREE depleted mantle sources; (2) M1 metamorphism occurred soon after emplacement at c.3.0 Ga ago. P-T estimates on garnet granulites from the Sittampundi complex characterise the MCSZ as a high-P event with metamorphic peak conditions of c. 11.8 kbar and 830°C (minimum). The MCSZ is associated with significant isothermal decompression of the order of 4.5–3.5 kbar followed by static high-temperature rehydration and retrogression around 600°C. The timing of MCSZ is inferred to be Neoproterozoic at c. 730 Ma based on a whole rock-garnet-plagioclase-hornblende Sm-Nd isochron age for a garnet granulite from the Sittampundi complex and its agreement with the 800–600 Ma published age data on post-kinematic plutonic rocks within the CSZ. These results demonstrate that the Cauvery shear zone is a zone of Neoproterozoic reworking of Archean crust broadly similar to the interface between the Napier and Rayner complexes of the East Antarctic shield in a model Proterozoic Gondwana supercontinent. Received: 5 December 1995 / Accepted: 3 May 1996  相似文献   

2.
Pb stepwise leaching (PbSL) determinations on two magnetite-enriched fractions of a BIF sample from the northeastern part of the Isua supracrustal belt (West Greenland) yield an isochron of 3691 ± 22 Ma (MSWD = 0.4). In combination with previously published geochronological constraints for a minimum deposition age of ∼3.71 Ga for volcanic sequences (Nutman et al., 1997) comprising the studied BIFs, and supported by microtextural observations, this demonstrates an early Archean amphibolite facies metamorphic event in the supracrustal. PbSL data on magnetite from slightly discordant veins within the same iron stone, together with bulk Pb isotope values of paragenetically late pyrite, yield a 3.63 ± 0.07 Ga (MSWD = 8.6) errorchron, with significantly different Pb isotopic compositions from those obtained from the main magnetite layers, and this suggests that the discordant layers of magnetite and sulfides crystallized when externally derived fluids passed through the formation a few tens of million of years later. The fluids controlling this redistribution of magnetite can be tentatively correlated with metasomatic alteration features produced during the widespread intrusion of 3.6 Ga granitic into 3.7 Ga tonalitic Amı̂tsoq gneisses enclosing the belt. Tremolite-rich layers in the BIF are characterized by Sm/Nd ratios close to chondritic [εNd(3800) of +1.7 and +2.1], within error of published results from adjacent basic units in the supracrustal suite. In contrast, the magnetite-dominated layers yield unrealistically high εNd(3800) of +14.8 and +14.4, indicative of Sm/Nd ratios resembling REE fractionated, continental sources. These high εNd(3800), together with radiogenic Sr leached from the magnetite-enriched separates, is ascribed to secondary hydroxyapatite, which predominantly forms as crystal overgrowths in the magnetite-rich bands. The timing of the hydrothermal event during which apatite was deposited within the BIF remains uncertain, but a TCHUR model age of 1.85 Ga from the apatite-dominated HCl leachate may point to a close genetic relationship with local Proterozoic metamorphism and granite formation by crustal remelting in the Isukasia area.Step leaching of magnetite from a similar silicate-oxide facies BIF from the western part of the Isua supracrustal belt yield a Pb-Pb isochron age of 2.84 ± 0.05 Ga (MSWD = 1.43). The agreement between the PbSL age and previously published field and isotopic evidence for a major late Archean metamorphic event affecting the western area suggests there was widespread equilibration accompanying the intrusion of the 2.75–2.83 Ga granodioritic Ikkattoq gneisses west and southwest of the western limb of the Isua supracrustal belt.We argue that the PbSL isochron ages date the peak of amphibolite facies metamorphic events which, respectively, affected the eastern and western sections of the Isua supracrustal belt during the early and late Archean. Our results give additional support to the suggestion that the scatter on published εNd(T) values from the Isua supracrustal belt and adjoining gneisses can be assigned to post-formational hydrothermal processes and underline the need for care in the interpretation of Sm-Nd bulk data from polymetamorphic rocks to constrain isotopic models of early Earth’s evolution.  相似文献   

3.
鞍山地区太古代岩石同位素地质年代学研究   总被引:23,自引:4,他引:23       下载免费PDF全文
乔广生 《地质科学》1990,(2):158-165
鞍山本溪地区太古代变质岩可分为三套,即含铁的表壳岩建造、侵入于铁建造中的花岗质片麻岩和铁架山奥长花岗质-花岗质片麻岩,后者为表壳岩的基底。原划为上鞍山群樱桃园组(齐大山矿带)和山城子组(歪头山-北台矿带)的斜长角闪岩分别获得2729Ma和2724Ma的Sm-Nd等时线年龄。这就为有争议的鞍本地区铁建造属于同一时代提供了依据,并讨论了表壳岩中的变质沉积岩以及铁架山基底片麻岩的同位素年代。  相似文献   

4.
This work provides unequivocal evidence of the existence of Mesoarchean granulite facies metamorphic event in the Palghat-Cauvery Shear Zone (PCSZ) of South India. Charnockite samples from two prominent hills at Kollaimalai (KM) and Pachchaimalai (PM) as well as from two quarries within the Bhavani Shear Zone (BSZ) have been analyzed for their Sm-Nd and Rb-Sr ages to investigate the existence or otherwise of the Archean granulite facies events within the PCSZ. The Rb-Sr whole-rock isochron ages for massive charnockites from both the hills appear to be contemporaneous at 2.9 Ga with the initial Sr isotopic ratios of 0.7012 and 0.7014, respectively. However, the Rb-Sr data for whole-rock samples of basic granulites from one of the quarries within the BSZ indicate open system behavior, while the charnockites from the other quarry have insufficient spread in 87Rb/86Sr ratios and do not yield any isochron. The Sm-Nd data, on the other hand, do not distinguish between the massive charnockite and the lowland charnockite and yield Depleted Mantle model ages in the range 2.98±0.3 Ga for all of them. The ɛT CHUR for all of these rocks are highly positive. Both the Sr isotopic ratios and positive ɛT CHUR values for these rocks strongly suggest a mantle source for all of them. An upper age limit of ∼3.28 Ga may be assigned to the crustal accretion of the protolith of all these rocks on the basis of their Nd model ages. The Rb-Sr isochron ages of 2.9 Ga for the two massifs could be the age of granulite facies metamorphism. Thus, the metamorphism in the KM and PM Hills took place within ∼100 Ma of crustal accretion of these rocks and probably was part of the same geological event of crust formation and metamorphism. The open system behavior with respect to Rb-Sr isotopes in the basic granulite from Bhavani is possibly due to the migration of Sr isotopes, triggered during the later shearing of these rocks.  相似文献   

5.
We report newly obtained U-Pb SHRIMP ages of detrital zircons from metagreywackes in the Hiriyur Formation (Chitradurga Group, Dharwar Supergroup) from the central eastern part of the Chitradurga greenstone belt. U-Pb analyses yield three major Neoarchean age populations ranging from 2.70–2.54 Ga with some minor age population of Mesoarchean. The maximum age of deposition is constrained by the youngest detrital zircon population at 2546 Ma. This is the first report of the occurrence of supracrustal rocks less than 2.58 Ga in the central part of Chitradurga greenstone belt. Close evaluation of detrital ages with the published ages of surrounding igneous rocks suggest that the youngest detrital zircons might be derived from rocks of the Eastern Dharwar craton and the inferred docking of the western and eastern Dharwar cratons happened prior to the deposition of the Hiriyur Formation. The Chitradurga shear zone, dividing the Dharwar craton into western and eastern blocks, probably developed after the deposition. Furthermore, the lower intercept is interpreted as evidence for the Pan-African overprints in the study area.  相似文献   

6.
Sm-Nd model ages of orthopyroxene-bearing massif charnockites from the Cardamom Hills Massif and adjoining supracrustal rocks from the Kerala Khondalite Belt in southernmost India are used to infer some of the relationships within these rocks and between them and neighboring areas. Most of these rocks have model ages of 2.1–2.8 Ga with most charnockites in the range 2.2–2.6 Ga. Thus, 3.0–3.4 Ga Archean rocks to their north did not contribute material to either suite and the two suites may have been juxtaposed after formation of the supracrustal rocks. The similarity of Sm-Nd isotope systems in the two units studied here supports an argument that the massif charnockites were the primary sole source of the detritus incorporated into the supracrustal rocks. A cordierite gneiss, representative of a relatively minor lithology in the supracrustal belt, has a model age of 1.3 Ga. The protolith of this gneiss not only formed from much younger material than the rest of the belt but also formed significantly after the other metasedimentary rocks. The source material of the gneiss protolith may have been located in the Wanni and Vijayan Complexes of Sri Lanka. The overlap of the model ages of rocks in this area and those in the Highland Complex of Sri Lanka supports the notion that these two sets of rocks were joined to each other in Gondwana. They belong to a belt that ran from Antarctica through Sri Lanka and India into Madagascar. This belt was involved in Pan-African tectono-metamorphism, as reflected in the 550 Ma age of the last, granulite-forming, event throughout the belt.  相似文献   

7.
207Pb–206Pb ages of zircons in samples of metasediments as well as ortho- and para-gneisses from both the western and the eastern parts of the Dharwar craton have been determined using an ion microprobe. Detrital zircons in metasedimentary rocks from both yielded ages ranging from 3.2 to 3.5 Ga. Zircons from orthogneisses from the two parts also yielded similar ages. Imprints of younger events have been discerned in the ages of overgrowths on older zircon cores in samples collected throughout the craton. Our data show that the evolution of the southwestern part of eastern Dharwar craton involved a significant amount of older crust (>3.0 Ga). This would suggest that crust formation in both the western and eastern parts of the Dharwar craton took place over similar time interval starting in the Mesoarchaean at ca. 3.5 Ga and continuing until 2.5 Ga. Our data coupled with geological features and geodynamic setting of the Dharwar craton tend to suggest that the eastern Dharwar craton and the western Dharwar craton formed part of a single terrane.  相似文献   

8.
中国西秦岭碎屑锆石U-Pb年龄及其构造意义   总被引:4,自引:1,他引:4  
西秦岭是北接华北克拉通、西接祁连与柴达木、南接松潘—甘孜地块的东秦岭造山带的西延。文中研究了该区从前寒武纪到三叠纪的碎屑沉积岩。这些碎屑沉积岩中分离出的锆石由LA-ICPMS(激光剥蚀等离子体质谱)进行了U-Pb定年。全岩Nd亏损地幔模式年龄类似于扬子克拉通年龄,主要分布于1.55~1.98Ga,峰值为1.81Ga,而与华北克拉通主要为古元古代与太古宙的模式年龄形成明显的对比。泥盆系中的碎屑锆石930~730Ma的U-Pb年龄指示其与扬子克拉通具亲缘性。930~730Ma是源区地壳的强烈增长阶段。二叠系—三叠系的碎屑沉积岩主体以含老于1600Ma的碎屑锆石为特征。碎屑锆石U-Pb年龄与Sm-Nd同位素组成指示此时华北克拉通南缘的基底岩石成为二叠系—三叠系碎屑沉积岩的重要物源。扬子克拉通在三叠纪时与华北克拉通拼接。西秦岭二叠系—三叠系碎屑沉积岩含有高达50%的华北克拉通南缘的基底岩石。  相似文献   

9.
The Dargawan gabbros intrusive into the Moli Subgroup of Bijawar Group, yielded Rb-Sr whole rock isochron age of 1967 ± 140 Ma. Based on the oldest age from overlying Lower Vindhyan (1.6Ga) and the underlying youngest basement ages (2.2 Ga), the time range of Bijawar sedimentation may be assigned as 2.1–1.6 Ga (Paleoproterozoic). Sm-Nd Model ages (TDM), obtained, for Dargawan gabbros, is c. 2876–3145 Ma. High initial 87Sr/ 86Sr ratio of 0.70451 (higher than the contemporary mantle) and negative ɛNdi (at 1.9 Ga) value of −1.5 to − 4.5, indicate assimilation of Archaean lower crustal component by the enriched mantle source magma at the time of gabbroic intrusion. The dolerite, from Damdama area, which is intrusive into the basement and overlying sediments of Chandrapur Group in the central Indian craton, yielded Rb-Sr internal isochron age of 1641 ± 120 Ma. The high initial 87Sr/86Sr ratio of 0.7098 and ɛNdi value of −3.5 to −3.7 (at 1.6 Ga) is due to contamination of the mantle source magma with the overlying sediments. These dolerites have younger Sm-Nd Model ages (TDM) than Dargawan gabbros as c. 2462–2675 Ma, which is similar to the age of the Sambalpur granite, from which probably sediments to this part of Chattisgarh basin are derived. Hence mixing of sediments with the Damdama dyke during its emplacement, gives rise to high initial 87Sr/86Sr and low initial 143Nd/144 ratios for these dykes. The c. 1600 Ma age indicates minimum age of onset of the sedimentation in the Chandrapur Group of Chattisgarh basin. Both the above mafic intrusions might have taken place in an intracratonic rift related (anorogenic) tectonic setting. This study is the first reliable age report on the onset of sedimentation in the Chandrapur Group. The total minimum time span of Chandrapur and Raipur Group may be 1.6 Ga to 1.0 Ga (Mesoproterozoic). The unconformably underlying Shingora Group of rocks of Chhattisgarh Supergroup thus indicates Paleoproterozoic age (older than 1.6 Ga). Most part of the recently classified Chattisgarh Supergroup and Bijawar-Vindhyan sequence are of Mesoproterozoic-Paleoproterozoic age and not of Neoproterozoic-Mesoproterozoic age as considered earlier. Petrographic study of basic dykes from Damdama area (eastern margin of Chattisgarh Supergroup) indicated presence of primary uranium mineral brannerite associated with goethite. This is the evidence of mafic intrusive providing geotherm and helping in scavenging the uranium from the surrounding and later alterations causing remobilisation and reconcentration of pre-existing uranium in host rocks as well as in mafic dyke itself otherwise mafic rocks are poor source of uranium and can not have primary uranium minerals initially. It can be concluded that mafic dykes have role in uranium mineralisation although indirectly.  相似文献   

10.
通过对四川冕宁沙坝及康定-泸定地区的斜长角闪岩-TTG片麻岩的系统Sm-Nd同位素的测定,在该区首次获得706Ma的Sm-Nd等时线年龄。据此等时线年龄及其他样品的Nd亏损地幔模式年龄证明长期以来这套被当作太古宙-古元古代的变质岩是新元古代大陆裂解与其后紧接着的地幔柱引起的热变质作用的产物。与已有数据相结合,初步认为扬子克拉通目前所出露的基底没有统一演化历史,对扬子克拉通的基底有待更深入的研究。  相似文献   

11.
INTRODUCTION TheYangtzecratonisoneofthemaingeotectonic blocksofChina'scontinent,connectingtheGanzi Song panblockwiththeLongmenMountainsinthewest Geologicalandtectonicstudieshaveshownthatthe basementoftheGanzi Songpanblockissimilartothe Yangtzecraton(Xuet…  相似文献   

12.
华夏地块基底变质岩同位素年龄数据评述   总被引:7,自引:0,他引:7  
根据基底正变质岩原岩的同位素年龄、地壳岩石中继承锆石U-Pb年龄和变质沉积岩的Nd模式年龄数据, 华夏地块存在一个主要由古元古代和中元古代地壳组成的变质基底. 我们在使用文献中报道的Sm-Nd等时线年龄数据时要慎重, 必须根据同源、同时、封闭和具有合适母子体比值的等时线判别原则对其合理性进行鉴别的基础上才能确定取舍. 继承锆石U-Pb年龄和Nd模式年龄都大于基底变质岩的原岩形成年龄, 因而它们不能代表基底的地层年龄. 对于继承锆石U-Pb年龄和Nd模式年龄反映的华夏地块广大区域内存在太古代地壳再循环组分, 不能笼统认为来自遥远的华北地块而排除华夏地块本身存在太古代地壳的可能性. 华夏地块是否存在太古代地质体, 应引起我们高度重视, 值得进行进一步研究和确定  相似文献   

13.
高山  刘勇胜 《地学前缘》2003,10(3):61-67
测定了辽宁复县奥陶纪金伯利岩和河北汉诺坝与山东栖霞第三纪碱性玄武岩中产出的地幔包体的Re Os同位素组成。金伯利岩中地幔包体的Re贫化Os同位素模式年龄 (TRD)为 2 .5~ 2 .8Ga ,从Re Os同位素定年角度证明了华北克拉通确实存在太古宙岩石圈地幔。对汉诺坝二辉橄榄岩包体获得了 (1.9± 0 .18)Ga的Re Os同位素等时线年龄 ,表明现今保存在那里的地幔主要是古元古代时形成的。汉诺坝地区出露有大量新太古代岩石 ,表明曾存在太古宙地幔。由于缺乏太古宙年龄 ,说明由汉诺坝所代表的克拉通中部曾存在的太古宙地幔在古元古代时已被减薄 ,并被 1.9Ga的新生岩石圈地幔置换。该事件与华北克拉通中部广泛的古元古代碰撞造山过程导致的麻粒岩相变质作用的时代相同 ,说明有关的岩石圈置换作用可能主要与拆沉作用有关。栖霞地幔包体具有与现代对流地幔相同的Os同位素组成 ,且Os同位素组成与Re/Os比值没有明显相关性 ,表明年龄很新。结合其它地质地球化学证据 ,说明克拉通东部的太古宙岩石圈地幔的置换作用主要发生在中生代 ,且可能与三叠纪华北和扬子陆块的陆陆碰撞造山导致的岩石圈地幔和下地壳的拆沉作用有关。本研究表明华北克拉通岩石圈地幔置换作用在时空上的分布是十分不均一的。 2 .5~ 2 .8Ga与 1.9Ga不仅?  相似文献   

14.
The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm/Nd and U/Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma.The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province.Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U/Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group.Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ˜ 1.0 ± 0.1 Ga, based on U/Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3–1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments.Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age.  相似文献   

15.
 大量含石榴石的基性麻粒岩透镜体出露于苏鲁变质带的北部及邻近地区,它们可能是再变质的高压变质岩石。在详细的岩相学研究的基础上,确定采自莱西和文登的样品WD01、WD04、ML06 是由高压麻粒岩经中-高压麻粒岩相再变质形成的,而采自威海的样品WH1 是由柯石英榴辉岩经中-高压麻粒岩相再变质形成的。Sm-Nd 同位素年代学研究也证实了二者的重大差别。3 个高压麻粒岩样品的矿物-全岩内部等时线年龄分别是1 846+ /-76Ma,1 743+ /-79Ma 和1 752+ /-30Ma,TDM 模式年龄是3.3Ga,3.0Ga 和2.8Ga.上述数据说明原岩形成在太古宙,而1 800Ma 是麻粒岩相降压变质事件的记录,这与华北克拉通前寒武纪高压麻粒岩的年代学一致。威海样品的Sm-Nd 同位素特征则完全不同。矿物和全岩形不成等时线,表现出它们之间的同位素不平衡。εNd(0)值高达+ 127,TDM 模式年龄是1.3Ga.这与Jahn(1994,1996)对威海同类样品的测定结果相同。可以推测威海样品的原岩是元古宙岩石,在后来复杂的变质过程中,在水岩相互作用和岩浆及重熔作用的影响下,同位素系统发生重大变化。同位素年代学为苏鲁变质带和华北克拉通的界限是昆嵛山岩浆-变质杂岩带提供了依据。  相似文献   

16.
Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.  相似文献   

17.
华北克拉通在新太古代末期发生克拉通化,形成了现今规模的古陆,大量的太古宙岩石均经历了~2500Ma左右的区域高级变质作用(高角闪岩相-麻粒岩相)。而华北克拉通北部冀北地区出露一套中低级变质(绿片岩相-角闪岩相)的火山-沉积岩系,主要包括胡麻营地区红旗营子表壳岩和大阴山地区单塔子表壳岩中变质程度较低的部分。胡麻营地区红旗营子表壳岩系主要岩石组合为变基性火山岩、绿帘角闪岩、斜长角闪岩、含石榴石斜长角闪岩、角闪斜长片麻岩、黑云斜长片麻岩、黑云角闪斜长片麻岩、黑云二长片麻岩、石英片岩、磁铁石英岩等,SIMS锆石U-Pb定年结果表明斜长角闪岩形成于2486±18Ma(MSWD=1.4),而黑云斜长片麻岩形成于2507±37Ma(MSWD=2.0)。大阴山地区单塔子中低级变质表壳岩系主要由浅变质火山岩、云母石英片岩、斜长角闪岩、磁铁石英岩和大理岩等组成,SHRIMP锆石U-Pb定年结果显示,浅变质火山岩中的变玄武岩形成于2490±19Ma(MSWD=2.0),而变英安岩形成于2502±8Ma(MSWD=0.83)。因此,冀北中低级变质的表壳岩系主要形成于新太古代末期,形成年龄为2507~2486Ma;结合冀东青龙地区新太古代末期(2511~2503Ma)的浅变质火山-沉积岩系(青龙表壳岩),我们认为新太古代末期,中低级变质表壳岩系广泛分布于华北克拉通的核部和边缘地区,此套岩系覆盖在太古宙高级变质杂岩之上,代表华北克拉通化之后的稳定盖层,是克拉通化的主要标志之一。  相似文献   

18.
The Nd, O and Sr isotopic characteristics of Precambrian metasedimentary, metavolcanic and granitic rocks from the Black Hills of South Dakota are examined. Two late-Archean granites (2.5-2.6 Ga) have Tdm ages of 3.05 and 3.30 Ga, suggesting that at least one of the granites was derived through the melting of significantly older crust. Early-Proterozoic metasedimentary rocks have Tdm ages that range from 2.32 to 2.45 Ga. These model ages, in conjunction with probable stratigraphic ages ranging from 1.9 to 2.2 Ga, indicate that mantle-derived material was added to the continental crust of this region during the early-Proterozoic. Previous studies of the Harney Peak Granite complex have reported U-Pb and Rb-Sr ages of about 1.71 Ga and most granite samples examined in this study have Sr isotopic compositions consistent with that age. Two granite samples taken from the same sill, however, give two-point Rb-Sr and Sm-Nd ages of 2.08 ±0.08 and 2.20 ±0.20 Ga (∑2200Nd = −15.5), respectively. In addition, whole-rock and apatite samples of the spatially associated Tin Mountain pegmatite give a Sm-Nd isochron age of 2000 ±100 Ma (∑2200Nd = −5.8 ±1.8).

The Sm-Nd, O and Rb-Sr isotopic systematics of these granitic rocks have been complicated to some degree by both crystallization and post-crystallization processes, and the age of the pegmatite and parts of the Harney Peak Granite complex remain uncertain. Processes that probably complicated the isotopic systematics of these rocks include derivation from heterogeneous source material, assimilation, mixing of REE between granite and country rock during crystallization via a fluid phase and post-crystallization mobility of Sr. The Nd isotopic compositions of the pegmatite and the Harney Peak Granite indicate that they were not derived primarily from the exposed metasedimentary rocks.  相似文献   


19.
The Trans-Amazonian cycle was an important rock-forming event in South America, generating voluminous juvenile and reworked fractions of continental crust. The Bacajá domain, in the southern sector of the Maroni-Itacaiúnas Province in the Amazonian craton, is an example of the Trans-Amazonian terranes adjacent to the Archean Carajás block. Zircon Pb-evaporation and whole-rock Sm–Nd analyses were carried out on representative samples of six lithological units, and allowed the proposal of a comprehensive tectonic-magmatic evolutionary sequence for the central and eastern parts of this domain, from the Neoarchean to the Rhyacian. Gneisses with ages of ca. 2.67 and 2.44 Ga are the oldest rocks recorded in the region, and probably represent remnants of island and continental arcs. The Três Palmeiras succession, emplaced between 2.36 and 2.34 Ga, hosts gold deposits and represents the first record of Siderian supracrustal rocks in the Amazonian craton. It was probably part of an island arc/ocean floor accreted to a craton margin. Rhyacian granitogenesis lasted for ca. 140 My (2.22–2.08 Ga), marking different stages of the Trans-Amazonian cycle. The first stage is represented by continental arc granitoids formed by melting of Archean crust at 2.22–2.18 Ga. The second is characterized by the production of juvenile material between 2.16 and 2.13 Ga. The third and final stage at ca. 2.08 Ga is represented by a large volume of granitoids originated from either juvenile material or reworked crust during compressive stresses. Nd isotopes reveal that juvenile rocks dominated in the northern part of the domain, whereas those formed from reworked crust predominate in the south. The present-day configuration of the Bacajá domain results from collision against the Archean Carajás block at the end of the Trans-Amazonian cycle.  相似文献   

20.
The Archaean Peninsular Gneiss of southern India is considered by a number of workers to be the basement upon which the Dharwar supracrustal rocks were deposited. However, the Peninsular Gneiss in its present state is a composite gneiss formed by synkinematic migmatization during successive episodes of folding (DhF1, DhF1a and DhF2) that affected the Dharwar supracrustal rocks. An even earlier phase of migmatization and deformation (DhF*) is evident from relict fabrics in small enclaves of gneissic tonalites and amphibolites within the Peninsular Gneiss. We consider these enclaves to represent the original basement for the Dharwar supracrustal rocks. Tonalitic pebbles in conglomerates of the Dharwar Supergroup confirm the inference that the supracrustal rocks were deposited on a gneissic basement. Whole rock Rb-Sr ages of gneisses showing only the DhF1 structures fall in the range of 3100–3200 Ma. Where the later deformation (DhF2) has been associated with considerable recrystallization, the Rb-Sr ages are between 2500 Ma and 2700 Ma. Significantly, a new Rb-Sr analysis of tonalitic gneiss pebbles in the Kaldurga conglomerate of the Dharwar sequence is consistent with an age of ~2500 Ma and not that of 3300 Ma reported earlier by Venkatasubramanian and Narayanaswamy (1974). Pb-Pb ages based on direct evaporation of detrital zircon grains from the metasedimentary rocks of the Dharwar sequence fall into two groups, 3300–3100 Ma, and 2800–3000 Ma. Stratigraphic, structural, textural and geochronologic data, therefore, indicate that the Peninsular Gneiss of the Dharwar craton evolved over a protracted period of time ranging from > 3300 Ma to 2500 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号