首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

2.
In the present study, roadside-deposited sediment samples collected from Kuwait city district, in Kuwait, were analyzed for specific heavy metals (As, Cr, Cu, Mn, Ni, Pb, and Zn). Contamination assessment status of heavy metals in roadside sediments was made using mathematical models in terms of enrichment factor (EF), geoaccumulation index (I geo), and contamination factor (CF). The sediments showed remarkably high levels of all the metals, except Ni, above background concentrations in the following order (As, Cu, Pb, Zn, Mn, and Cr). CF and I geo revealed overall moderately uncontaminated and moderate contamination, respectively, but the EFs for all metals ranged between moderate and significant enrichment.  相似文献   

3.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

4.
This study reported the first comprehensive research on identification of metal concentrations (Fe, Mg, Mn, Pb, Cd, Cr) in order to provide baseline data for future studies, identify possible sources, determine degree of pollution, and identify potential ecological risks of metals in surface sediments from Iran’s Choghakhor Wetland. The order of metal concentration was as follows: Fe > Mg > Mn > Pb > Cd > Cr, with mean concentrations of 6140.35, 1647.32, 289.03, 1.10, and 0.45 µg/g of dry weight, respectively. These results reveal that Choghakhor Wetland is not heavily polluted compared to other regions. The results of enrichment factor (EF) and geoaccumulation index (I geo) showed that Fe, Pb, Mg, Cr, and Mn presented low levels of contamination and probably originated from natural sources. On the other hand, the results of EF and I geo indices suggested that Cd concentrations in sediments of Choghakhor Wetland originated from anthropogenic sources. Based on the results of three sets of sediment quality guidelines, only Cd concentration in sediments of Choghakhor Wetland is a threat for aquatic organisms of Choghakhor Wetland. The results of multivariate analysis such as principal component analysis and cluster analysis showed that Fe–Mn, Cr–Mg, and Pb groups originated from natural sources, while Cd concentrations in sediments of Choghakhor Wetland originated from both natural and anthropogenic sources (mainly chemical fertilizers). To our knowledge, this is the first study about metal concentrations in sediments of Choghakhor Wetland, and because of low levels of these metals, these concentrations can be considered background levels for future investigation.  相似文献   

5.
Street dust is one of the important indicators that reflect the status of urban environmental pollution. There are many studies of heavy metals contamination of street dust in capital cities; however, little attention has been paid to this kind of study in medium cities, including China. The dust samples were collected in the district of traffic crossroads in Xianyang city, Shaanxi Province. Pb, Cd, Cu, Ni, Zn, Cr and Mn concentrations were determined using atomic absorption spectrometry (AAS). The results indicate that the concentrations of heavy metals are higher than the background values of soils in Shaanxi Province. The contamination level of heavy metals is assessed by potential ecological risk index (E r), geoaccumulation index (I geo), enrichment factor (EF) and pollution index (Pi). The low I geo, EF, E r, Pi and PIn (integrated pollution index) for Mn in street dusts indicate an absence of distinct Mn pollution. The high EF, Pi and PIn of Cu and Zn indicate that there is considerable Cu and Zn pollution. It is suggested that more attention should be paid to heavy metals contamination of Cu and Zn. The assessment results of Pi and PIn suggest that Pb, Ni and Cr present strong pollution; however, their EFs indicate that they cause moderate pollution and their I geo indicates that they are unpolluted to moderately polluted. The contamination class value with different assessing methods is of the order: Pi ≈ PIn > EF > I geo > E r.  相似文献   

6.
The sediments of the raw sewage-fed fishpond system at East Kolkata Wetland (EKW) were analyzed for heavy metal content in a comprehensive way. Various indices of contamination like enrichment factor (EF), geo-chemical index (I geo), modified degree of contamination (mDC), and pollution load index (PLI) were assessed. In all cases, instead of literature values, the metal concentrations of less contaminated sites, separated by the statistical approach of the hierarchical cluster analysis, were used as baseline values. In the present study, about 70% of the pond sediments are found uncontaminated, 5% display low degree of contamination and 25% are designated as moderate degree of contamination. Both the EF and I geo indices highlighted that the metals lead (Pb), cadmium (Cd), and chromium (Cr) are responsible for the contamination while there is little anthropogenic input in cases of Cu, Zn, and Ni. Most of the ponds situated near the main sewage flowing canals as well as the main traffic highway and close to the solid waste dumping areas recorded higher degree of metal contamination as evident from spatial variation of mDC and PLI indices in the study area. Indices comparison study clearly indicates that although these are calculated using different methods, these may or may not produce the same indices values and hence the values should neither be compared nor be averaged. But all the above indices are directly related to a common term contamination factor (CF). Classification of contamination levels based on these CF values is found to be similar and this classification is only valid up to the level of high degree of contamination. Thus, the use of any one of these indices is sufficient to classify the degree of contamination of an area. However, to evaluate the contamination per metal, both I geo and EF are effective while, to assess the composite effect of all the metals, PLI is preferable to mDC.  相似文献   

7.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

8.
Heavy metal accumulation due to industrial activities has become a very sensitive issue for the survival of the aquatic life. Therefore, distributions of several heavy metals have been studied in the surface sediments of Tapti–Hazira estuary, Surat, to assess the impact of anthropogenic and industrial activities near estuary. Totally 60 sediment samples were collected from four different sites at Tapti–Hazira estuary, Surat from January 2011 to May 2011 and examined for metal contents. The average heavy metal load in the study area are found to be 43.28–77.74 mg/kg for Pb, 48.26–72.40 mg/kg for Cr, 117.47–178.80 mg/kg for Zn, 71.13–107.82 mg/kg for Ni, 123.17–170.52 mg/kg for Cu, 0.74–1.25 mg/kg for Cd, 14.73–21.69 mg/kg for Co. Calculated enrichment factors (EF) reveal that enrichment of Pb and Cd is moderate at all sites, whereas other metals Cr, Ni, Zn, Co, and Cu show significant to very high enrichment. Geo-accumulation index (I geo) results revealed that the study area is nil to moderately contaminated with respect to Cd, moderately to highly polluted with respect to Pb, Zn, and Cu and high to very highly polluted with respect to Co and Cr.  相似文献   

9.
This study concerns the mineralogy, spatial distribution and sources of nine heavy metals in surface sediments of the Maharlou saline lake, close to the Shiraz metropolis in southern Iran. The sources for these sediments were studied by comparing the mineralogy and the distribution of heavy metals, using multivariate statistical analysis (correlation analysis and principal component analysis). The geochemical indices, including geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI), were used to assess the degree of heavy metal contamination in surface sediments. Sediment quality guidelines (SQGs) have also been applied to assess its toxicity. The XRD analysis shows that the main minerals of the surface sediments are aragonite, calcite, halite and quartz, with small amounts of montmorillonite, dolomite and sepiolite. The total heavy metal contents in surface sediments decrease in order of Sr?>?Ni?>?Cr?>?Zn?>?Cu?>?Co?>?Pb?>?As >?Cd and the average concentrations of Sr, Ni and As exceeded more than 10, 5 and 3 times, respectively, by comparing with the normalized upper continental crust (UCC) values. The results of pollution indices (Igeo, CF and PLI) revealed that strontium (Sr), nickel (Ni) and arsenic (As) were significantly enriched in those sediments. Based on the sediment quality guidelines (SQGs), Ni would infrequently cause toxicity. Multivariate statistical analysis indicated that the Ni, Co and Cr came mainly from natural geological background sources, while Cd, Cu, Pb, and Zn were derived from urban effluents (especially traffic emissions) and As originated from agriculture activities. Significant relationships of Sr with S, CaO and MgO in sediments suggest that Sr was derived from carbonate- and gypsum-bearing catchment source host rocks.  相似文献   

10.
Sediments and surface water contamination by the industrial effluents containing heavy metals is the most detrimental environmental impact. Therefore, the present work attempts to determine the status of eight heavy metal distribution in sediments and water samples, and their ecological risks’ assessment in the studied area. The distribution pattern of heavy metals in the water and sediment follows the sequences: Zn > Cu > Pb > Cr > Mn > Ni > As > Cd and Mn > Zn > Cr > Pb > Cu > Ni > As > Cd, respectively. Gross water pollution is observed at different sampling points of Dhalai Beel and Bangshi River. The comparison of sedimentary mean metal concentrations with several environmental contamination monitoring parameters, viz, threshold effect level (TEL), probable effect level (PEL), and severe effect lever (SEL) indicates that the metal levels are less than PEL except Cr. Moreover, the level of contamination degree (C d) and modified degree of contamination (mC d) indicates ‘low’ and ‘nil to low’ degree of contamination, respectively. Pollution load indices (PLI) of the studied area are lower than unity, indicates no pollution. Furthermore, a toxic-response factor is applied to assess the potential ecological risk of these heavy metals into the water body. The results of this study exhibit a low potential ecological risk of heavy metals. The Pearson’s correlation and cluster analysis are also performed to assess the heavy metal interactions in water and sediment samples.  相似文献   

11.
Ten heavy metals, namely, Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn were partially extracted using aqua regia digestion method and analysed by ICP-AES from 56 stream sediment samples collected from River Orle, Igarra area, southwestern Nigeria. The analytical results were used to produce geochemical distribution maps for the elements and were subjected to univariate statistical analysis in order to evaluate the distribution and abundance of the heavy metals in the study area. The degree of pollution of these stream sediments by these heavy metals was evaluated by calculating such parameters as enrichment factors (EF), as well as pollution load and geo-accumulation indices (PLI and Igeo). Co, Cr, Cu, Ni, Pb and Zn are widely distributed in the drainage system while the distribution of Ag, Cd, As and Hg is restricted to only parts of the drainage system with Ag and Cd being localized to one sample site each near Epkeshi in the southern part of the study area. Cr and Pb display anomalously high concentrations, each from a site, also in the same locality where Ag and Cd were detected, indicating the likelihood that the four elements, Cr, Pb, Ag and Cd, are genetically related. Calculation of the enrichment factor (EF), pollution load index (PLI) and geo-accumulation index (Igeo) yielded results that indicate that all the 56 stream sediment sites, except one located about 4 km southeast of Epkeshi in the southern part of the Orle drainage system, are practically unpolluted by heavy metals. The relatively high metal concentration of this anomalous site having Pb EF of 62.5, PLI of 1.14 and Pb Igeo of 2.44 signifies Pb pollution. Both natural and anthropogenic sources of the Pb contamination around Epkeshi locality are possible. In conclusion, the levels of concentrations of heavy metals in the study area, in general, do not constitute any serious environmental risk except for Pb which needs to be monitored at only one site in the study area. Therefore the concentration ranges for the different heavy metals in the study area can serve as baseline environmental data against which the degree of pollution of these heavy metals can be evaluated in future.  相似文献   

12.
We present multi-element concentrations in the surface sediments from the offshore of Cauvery delta of southeast India to evaluate the impact of coastal pollution on the geochemical behaviour of surface deposits. For this study, 16 surface sediment samples were collected from the offshore of Cauvery delta of southeast India and were analysed using traditional XRF for various major (SiO2, Al2O3, MgO, Fe2O3, MnO, Na2O, K2O, CaO, P2O5, TiO2) and trace elements (Rb, Sr, Ba, Y, Zr, Nb, V, Cr, Co, Ni, Cu, Zn, Th, Pb) after powdering it to ASTM 230 (<63 μm). The main objectives of this study were to understand the geochemical behaviour of the coastal surface sediments and its performance and relation with the pollution indices and statistical analysis. To meet out the objective, pollution indices such as enrichment factor (EF), contamination factor (CF) and Geoaccumulation Index (I geo) were calculated and statistical analyses were performed to understand the relationship between the geochemical parameters. Both EF and I geo show the enrichment of Cu, Cr and Zr, whereas CF shows enrichment of Cu and Cr. Statistical analyses exhibit poor correlation between these elements and fine fraction indicating the insignificant role played by both grain size and organic matter. Strong positive association between Cu and Zn with CaCO3 exhibits the role of carbonates in precipitating these metals from the overlying water column possibly related to agricultural pollution. Distribution and association of other elements suggest the influence of mineralogy in geochemical composition of surface sediments. Based on this study, we suggest that environmental indices alone should not be considered for evaluating environmental conditions and a prior geogenic characterisation of the sediments is necessary.  相似文献   

13.
The concentrations of potential toxic elements (PTEs) such as cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were measured in five different stations of Rameswaram (RM) coast, Gulf of Mannar (GoM), India, in coastal waters in sediments and tissues of Adocia pigmentifera. Concentration of PTEs (Cd, Cu, Pb and Zn) was found to be highest in sediments followed by A. pigmentifera and seawater samples collected from the different stations of RM coast. The pattern of accumulation of PTEs in the three sample types is of the following order Zn < Pb < Cu < Cd. The seasonal variation of these PTEs also followed the same pattern. One-way analysis of variance (ANOVA) with Tukey’s HSD post hoc test has revealed significant differences among stations S1–S4 when compared with the station S5 which is considered as the reference site. Correlation coefficient study showed no significant correlation in the concentration of PTEs in A. pigmentifera, seawater and sediment samples. The concentration of all the PTEs in different sample types has exceeded the FAO/WHO/sediment background values, except for the concentration of Zn in A. pigmentifera and sediment sample, which did not exceed the limits. The contamination factor (CF) and geoaccumulation index (I geo) values indicated significant contamination of PTEs in the sediments from different stations of RM coast, India. Variations found between the sample types during the studies could be due to changes in levels of pollution discharge over time, availability of PTEs for adsorption as well as variations in the sampling season. Increasing urban sprawl and release of effluents both from domestic and industrial sources are the main sources of pollution at RM coast and are the prime reasons for the loss of existing diverse ecosystem.  相似文献   

14.
Anzali international wetland located in southwestern Caspian Sea coast is one of the most important wetlands of Iran from environmental and ecological points of view. Metal concentrations (Cu, Zn, Cr, Fe, Mn, Pb, Ni, Cd, and Li) in 41 surface sediment samples from Anzali wetland were determined. Assessment of ecological risk of sediment samples as well as their degree of contamination revealed considerable ecological risk and moderate degree of contamination in eastern part of the study area. Multivariate statistical analyses were used to identify metal content relationship and their origin. Higher enrichment factors of Cd, Pb, and Zn exhibited probable effects on human activities. Based on sediment quality guidelines (SQGs), moderate potential toxicity levels of sediment samples were identified. A new sediment quality index named sediment toxicity degree was developed based on the results of the multivariate statistical analysis to assess metal toxicity in surface sediments of aquatic systems. Results showed higher sensitivity of the new index (STd) to assess toxic effect of heavy metals on sediments and better capability to differentiate zones with different levels of risk within the study area than that of some other indices such as SQG-Q.  相似文献   

15.
This study aims at identifying multi-source heavy metal pollution from natural and anthropogenic sources using a regression model, principal component analysis, and five different indices (geo-accumulation index (I geo), the modified degree of contamination, pollution load index (PLI), enrichment factor, and ecological risk factor. Results revealed that: (1) although the average concentrations of soil heavy metals (Cu, Cr, Pb, Hg, As, Zn) were generally low, Hg, As, and Cr concentrations exceeded national standard values by approximately 0.91, 1.84, and 0.91 times with maximum concentrations up to 0.41, 78.6, and 175.2 μg/g, respectively; (2) PLI results showed that the industrial park and Wucaiwan open coal mining area were the most polluted (PLI of 1.98, 1.71). The potential ecological hazards index indicated that the E i r of three heavy metals (Cu, Hg, As) in the soil were relatively high, presenting potential ecological risk factors of 74.89, 16.71, 4.15%, respectively; (3) stepwise regression model and principal component analysis suggest that Cu and Zn were primarily effected by the natural geological condition and atmospheric dust fall. Cr, Hg, Pb are mainly derived from anthropogenic sources, particularly coal mining activities and industrial sources. Results of this research have some significant implications for heavy metal pollution prevention and the sustainable development of the economy and ecology of arid regions in China.  相似文献   

16.
Roadside dust samples were collected from selected areas near the fuel stations in Karkh District of Baghdad City, the capital of Iraq, as well as both sides of the highway between Ramadi and Rutba. In order to assess the probable pollution level of heavy metals (Cd, Ni, and Pb) in the study areas, they were determined in the roadside dust using an atomic absorption spectrophotometer. The extent of traffic contribution to roadside dust was assessed by comparing the metal concentrations in roadside dust to those of Upper Continental Crust background considering a Cd background of 0.098 mg/km, Ni background of 44 mg/km, and Pb background of 16 mg/km using geo-accumulation index (I geo), contamination factor (CF), and pollution load index (PLI). The roadside dust contains relatively elevated levels of heavy metals. The average concentration of Cd, Ni, and Pb in Baghdad is 0.17, 25.5, and 14.8 mg/kg; in the north of the highway is 0.14, 23.4, and 14.7 mg/kg; and in the south of the highway is 0.2, 27.4, and 15.6 mg/km. The higher averages of these metals were recorded in the south of the highway. The study areas are impacted with considerable quantity of metals. The distribution pattern of the concentrations of metals was essentially affected by exhausted gases emitted from transportation automobile where the direction of the prevailing wind played a major role in the transport of the pollutants, causing an increase in metal concentrations towards the south side of the highway.  相似文献   

17.
Concentration and distribution of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) in surface sediments collected from five stations located along the southwest coast of India were investigated seasonally to assess whether there is insidious buildup of heavy metals. Spatial variation was in accordance with textural characteristics and organic matter content. The concentration of the metals in sediments of the study area followed the order: Zn > Cr > Ni > Cu > Pb > Cd > Hg. The use of geochemical tools and sediment quality guidelines to account for the magnitude of heavy metal contamination revealed high contamination in monsoon and impoverishment during post-monsoon. Estimated total metal concentrations in the present investigation were comparable with other studies; however, concentrations of Ni and Zn were higher than that of other coastal regions. Concentrations of metals in sediment largely exceed NOAA effects range:low (e.g., Cu, Cr, Hg) or effects range:median (e.g., Ni) values. This means that adverse effects for benthic organisms are highly probable.  相似文献   

18.
The present study investigates the anthropogenic metal input into the lake system, the toxic metal pollution in the sediments of Kodaikanal Lake. Surface sediment samples were collected at seven locations to represent its spatial variability within the lake. Samples were subjected to analyze for Fe, Co, Cr, Mn, Ni, Zn, Cd, Cu, Ag, Pb, Hg, and As by energy dispersive X-ray fluorescence (EDXRF) and their concentrations in lake sediments range from 102,000–109,000, 561–2699, 292–544, 211–482, 79–163, 57–265, 57–74, 37–92, 46–59, 20–97, 19–30, to 13–24 mg/kg, respectively. The sources of pollution were inferred through spatial and statistical analyses. Most of the toxic metal contents in the sediments are found to exceed the background concentration in all locations. The enrichment factor (EF) and index of geoaccumulation (I geo) of Hg, Co, Cd, and Ag showed that sediments of Kodaikanal Lake exhibit the probability of anthropogenic influence. The significant Pearson’s correlation coefficient is also suggesting that they probably originated from the same source of occurrence. The contamination factor and degree of contamination of the Kodaikanal Lake sediments are strongly polluted in terms of most of the examined metals. The study also provides environmentally significant information about anthropogenic influence on the lake sediments.  相似文献   

19.
Concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in campus dust from kindergartens and elementary schools in Xi’an, China, were analyzed using X-ray fluorescence spectrometry and heavy metal contamination levels were assessed based on the geoaccumulation index (I geo), enrichment factor (EF) and numero synthesis pollution index (NSPI). The results indicate that, in comparison with Shaanxi soil, dust samples have elevated metal concentrations as a whole, except for V, Mn, Ni, and As. The assessment results of I geo and EF indicate that V, Mn, Ni, and As in campus dust are uncontaminated, while Ba and Cr are uncontaminated to moderately contaminated, and Co, Cu, Pb, and Zn are moderately to strongly contaminated. The NSPI results show that most dust samples presented heavily contaminated by heavy metals. More attention should be paid to heavy metal contamination of campus dust from kindergartens and elementary schools of Xi’an.  相似文献   

20.
The present study to find seasonal (September 2010–June 2011) heavy metal (Cd, Pb, Cr, Co, Ni, Zn, Cu, Fe, As) contamination and the origins thereof in surface sediments of Gökçekaya Dam Lake, as constructed on Sakarya River, the third-longest river in Turkey and the largest river of the Northwestern Anatolia. Upon analyses for the purpose thereof, heavy metal contamination in annual average concentrations in the lake sediment varied, respectively, as Fe > Zn > Cr > Ni > Cu > Pb > Co > As > Cd. Statistical assessments performed in order to see whether the average values of the heavy metal contamination as measured at stations placed in the lake changed by seasonal periods. There found statistically significant differences especially in Cd, Zn, and Pb between seasonal periods. In accordance with the Sediment Quality Index, Gökçekaya Dam Lake sediment was classified as “highly polluted” in terms of the amount of anthropogenic contaminants of As, Cr, Cu, Ni, Pb, and Zn. Enrichment factor and geoaccumulation index values (I geo) were calculated in order to geochemically interpret the source of contamination due to heavy metal concentration in the lake sediment and the level of pollution. The As, Co, Cr, Cu, Ni Pb, and Zn values demonstrated that the sediment was rich for anthropogenic contaminants. The lake was found especially rich for arsenic (14.97–34.70 mg/kg) and lead (68.75–98.65 mg/kg) in accordance with annual average values. In general the lake was geochemically characterized as “moderately contaminated” in terms of As, Co, Cr, Cu, Ni, Pb, and Zn content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号