首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract The Devono-Carboniferous Horton Group of Cape Breton Island was mostly deposited in two fault-bounded asymmetric sub-basins which were part of a large intracontinental rift system. This system lay at a palaeolatitude of about 10–15o S–a warm, semi-arid climate. The half-graben sub-basins had opposed polarity, were approximately 100 times 50 km in size and were separated by a narrow zone of elevated Acadian basement. These features are common to the adjacent structural segments of known rifts, and are unlike those of transtensive pull-apart systems. Sedimentation occurred in four successive depositional systems which reflect a tectonic evolution of increased and then decreased extensional subsidence through the 8–12 Myr interval represented. Post-Acadian sedimentation began with System 1 bimodal volcanics and grey distal braided fluvial sediments deposited in a slowly subsiding broad linear sag basin. System 2 consists of reddened braidplain sediments near fault-bounded margins and mudflat/playa sediments in sub-basin centres, deposited in two discrete asymmetric sub-basins with a general upward-fining trend. Gradual expansion of the mudflat setting and confinement of coarse marginal fades is interpreted as a response to increasingly rapid and deep fault-bounded subsidence. Depositional System 3, is a complex of grey lacustrine offshore, shoreline and fan delta facies deposited in two adjacent half-graben segments with opposed polarity of asymmetry. An increased rate of tectonic subsidence allowed a large standing body of water to accumulate lacustrine sediments along the axis of each sub-basin during this phase of maximum subsidence. System 4 consists of reddened proximal alluvial fan, medial fluvial and distal grey meandering fluvial/floodplain sediments which accumulated in sub-basins with fault-bounded margins and asymmetry identical to those of earlier systems, indicating a continuation of tectonic style. However, an overall coarsening-upward trend indicates waning of active fault-related subsidence and consequent progradation of marginal coarse wedges to fill the sub-basins. Rapid marine transgression and deposition of Windsor Group carbonates, evaporites and elastics continued within a more extensive rift basin during renewed fault-bounded subsidence.  相似文献   

2.
Mapping and correlation of 2D seismic reflection data define the overall subsurface structure of the East Gobi basin (EGB), and reflect Jurassic–Cretaceous intracontinental rift evolution through deposition of at least five distinct stratigraphic sequences. Three major northeast–southwest‐trending fault zones divide the basin, including the North Zuunbayan (NZB) fault zone, a major strike‐slip fault separating the Unegt and Zuunbayan subbasins. The left‐lateral NZB fault cuts and deforms post‐rift strata, implying some post‐middle‐Cretaceous movement. This fault likely also had an earlier history, based on its apparent role as a basin‐bounding normal or transtensional fault controlling deposition of the Jurassic–Cretaceous synrift sequence, in addition to radiometric data suggesting a Late Triassic (206–209 Ma) age of deformation at the Tavan Har locality. Deposits of the Unegt subbasin record an early history of basin subsidence beginning ~155 Ma, with deposition of the Upper Jurassic Sharilyn and Lower Cretaceous Tsagantsav Formations (synrift sequences 1–3). Continued Lower Cretaceous synrift deposition is best recorded by thick deposits of the Zuunbayan Formation in the Zuunbayan subbasin, including newly defined synrift sequences 4–5. Geohistory modelling supports an extensional origin for the EGB, and preliminary thermal maturation studies suggest that a history of variable, moderately high heat flow characterized the Jurassic–Cretaceous rift period. These models predict early to peak oil window conditions for Type 1 or Type 2 kerogen source units in the Upper Tsagantsav/Lower Zuunbayan Formations (Synrift Sequences 3–4). Higher levels of maturity could be generated from distal depocentres with greater overburden accumulation, and this could also account for the observed difference in maturity between oil samples from the Tsagan Els and Zuunbayan fields.  相似文献   

3.
New seismic reflection profiles from the Tugrug basin in the Gobi‐Altai region of western Mongolia demonstrate the existence of preserved Mesozoic extensional basins by imaging listric normal faults, extensional growth strata, and partially inverted grabens. A core hole from this region recovered ca. 1600 continuous meters of Upper Jurassic – Lower Cretaceous (Kimmeridgian–Berriasian) strata overlying Late Triassic volcanic basement. The cored succession is dominated by lacustrine and marginal lacustrine deposits ranging from stratified lacustrine, to subaqueous fan and delta, to subaerial alluvial‐fluvial environments. Multiple unconformities are encountered, and these represent distinct phases in basin evolution including syn‐extensional deposition and basin inversion. Prospective petroleum source and reservoir intervals occur, and both fluid inclusions and oil staining in the core provide evidence of hydrocarbon migration. Ties to correlative outcrop sections underscore that, in general, this basin appears to share a similar tectono‐stratigraphic evolution with petroliferous rift basins in eastern Mongolia and China. Nevertheless, some interesting contrasts to these other basins are noted, including distinct sandstone provenance, less overburden, and younger (Neogene) inversion structures. The Tugrug basin occupies an important but perplexing paleogeographic position between late Mesozoic contractile and extensional provinces. Its formation may record a rapid temporal shift from orogenic crustal thickening to extensional collapse in the Late Jurassic, and/or an accommodation zone with a Mesozoic strike‐slip component.  相似文献   

4.
Along-strike variability within a Late Cretaceous to early Palaeocene contractional growth structure and associated alluvial fan deposits is documented at the northern margin of the Arc Basin (Provence, SE France). This contribution shows that alluvial fans can be used as high-resolution proxies to reconstruct structural segmentation and palaeo-geomorphological evolution of a source/basin margin system. Facies-based reconstruction allows the spatial and temporal distribution of alluvial fan bodies to be mapped. Relationships between fan area and catchment size from modern alluvial fan systems were used to estimate palaeo-catchment size. Combining alluvial fan morphologies with catchment area, pebble provenance analysis and growth structure reconstruction, we show that: (1) fan distribution and related depositional processes were strongly influenced by intrinsic parameters such as drainage basin evolution, local structural inheritance and lateral facies changes in source area lithologies; (2) Inherited structures trending N100 effectively controlled the first-order location of the fold and thrust structures (Montagne Sainte-Victoire Range) and adjacent depositional areas (Arc Basin); (3) Syn-sedimentary faults trending N010-030 influenced the source/basin margin development and interacted with developing growth structures; (4) Facies changes in Jurassic carbonates controlled fold development and consequently the structural evolution of the source area; and (5) the N010-030 faults and along-strike variability of the source/basin margin system were ultimately controlled by basement structures that controlled where Late Cretaceous deformation nucleated. The overall architecture of the source/basin margin system reflects segmentation and strain partitioning along strike, as demonstrated by diachronous alluvial fan distribution.  相似文献   

5.
Subsidence analyses from the Betic Cordillera, southeast Spain   总被引:1,自引:0,他引:1  
Fifty‐four Mesozoic–Cenozoic stratigraphic sections from the Betic Cordillera of southeast Spain have been analysed in order to estimate the timing and amount of lithospheric stretching that occurred at the western end of the Tethyan Ocean since the Hercynian Orogeny. The standard backstripping technique has been used in order to calculate the water‐loaded subsidence of basement for each section. Water‐loaded subsidence curves were then inverted in order to determine the variation of lithospheric strain rate as a function of time, which yields estimates of timing, magnitude and intensity of stretching. Rifting commenced during the Late Permian/Early Triassic times and continued intermittently throughout the Mesozoic in response to the opening of the Tethyan Ocean to the east and the opening of the Atlantic Ocean to the west. Two major events in the Permo‐Triassic/Early Jurassic and the Late Jurassic/Early Cretaceous can be clearly identified. Stretching factors are generally small (1.1–1.25) probably because the Betic Cordillera was located at the westernmost end of the Tethys. Peak strain rates of ~10?15 s?1 were obtained for Mesozoic rift events and these values are in broad agreement with those obtained throughout the Tethyan Realm. We have also analysed the Neogene extensional event, which played an important role in forming the existing Mediterranean Sea. A combination of well‐log information and calibrated seismic reflection data was modelled. Peak strain rates in these younger basins are almost one order of magnitude faster than those estimated for the Mesozoic basins. These higher values appear to be typical of back‐arc extensional basins elsewhere. To the west and north of the Betic Cordillera, the Guadalquivir foreland basin developed as extension took place further east. Backstripped sections from this basin clearly record the northward migration of foreland basin subsidence through time.  相似文献   

6.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

7.
The main Karoo Basin of South Africa is a Late Carboniferous–Middle Jurassic retroarc foreland fill, developed in front of the Cape Fold Belt (CFB) in relation to subduction of the palaeo-Pacific plate underneath the Gondwana plate. The Karoo sedimentary fill corresponds to a first-order sequence, with the basal and top contacts marking profound changes in the tectonic setting, i.e. from extensional to foreland and from foreland to extensional, respectively. Sedimentation within the Karoo Foreland Basin was closely controlled by orogenic cycles of loading and unloading in the CFB. During orogenic loading, episodes of subsidence and increase in accommodation adjacent to the orogen correlate to episodes of uplift and decrease in accommodation away from the thrust-fold belt. During orogenic unloading the reverse occurred. As a consequence, the depocentre of the Karoo Basin alternated between the proximal region, during orogenic loading, and the distal region, during orogenic unloading. Orogenic loading dominated during the Late Carboniferous–Middle Triassic interval, leading to the accumulation of thick foredeep sequences with much thinner forebulge correlatives. The Late Triassic–Middle Jurassic interval was dominated by orogenic unloading, with deposition taking place in the distal region of the foreland system and coeval bypass and reworking of the older foredeep sequences. The out of phase history of base-level changes generated contrasting stratigraphies between the proximal and distal regions of the foreland system separated by a stratigraphic hinge line. The patterns of hinge line migration show the flexural peripheral bulge advancing towards the craton during the Late Carboniferous–Permian interval in response to the progradation of the orogenic front. The orogenward migration of the foreland system recorded during the Triassic–Middle Jurassic may be attributed to piggyback thrusting accompanied by a retrogradation of the centre of weight within the orogenic belt during orogenic loading (Early Middle Triassic) or to the retrogradation of the orogenic load through the erosion of the orogenic front during times of orogenic unloading (Late Triassic–Middle Jurassic).  相似文献   

8.
The Yanshan fold‐thrust belt is an exposed portion of a major Mesozoic orogenic system that lies north of Beijing in northeast China. Structures and strata within the Yanshan record a complex history of thrust faulting characterized by multiple deformational events. Initially, Triassic thrusting led to the erosion of a thick sequence of Proterozoic and Palaeozoic sedimentary strata from northern reaches of the thrust belt; Triassic–Lower Jurassic strata that record this episode are deposited in a thin belt south of this zone of erosion. This was followed by postulated Late Jurassic emplacement of a major allochthon (the Chengde thrust plate), which is thought to have overridden structures and strata associated with the Triassic event and is cut by two younger thrusts (the Gubeikou and Chengde County thrusts). The Chengde allochthon is now expressed as a major east–west trending, thrust‐bounded synform (the Chengde synform), which has been interpreted as a folded klippe 20 km wide underlain by a single, north‐vergent thrust fault. Two sedimentary basins, defined on the basis of provenance, geochronology and palaeodispersal trends, developed within the Yanshan belt during Late Jurassic–Early Cretaceous time and are closely associated with the Chengde thrust and allied structures. Shouwangfen basin developed in the footwall of the Gubeikou thrust and records syntectonic unroofing of the hanging wall of that fault. Chengde basin developed in part atop Proterozoic strata interpreted as the upper plate of the Chengde allochthon and records unroofing of the adjacent Chengde County thrust. Both the Chengde County thrust and the Gubeikou thrust are younger than emplacement of the postulated Chengde allochthon, and structurally underlie it, yet neither Shouwangfen basin nor Chengde basin contain a detrital record of the erosion of this overlying structure. In addition, facies, palaeodispersal patterns and geochronology of Upper Jurassic strata that are cut by the Chengde thrust suggest only limited (ca. 5 km) displacement along this fault. We suggest that the units forming the Chengde synform are autochthonous, and that the synform is bounded by two limited‐displacement faults of opposing north and south vergence, rather than a single large north‐directed thrust. This conclusion implies that the Yanshan belt experienced far less Late Jurassic shortening than was previously thought, and has major implications for the Mesozoic evolution of the region. Specifically, we argue that the bulk of shortening and uplift in the Yanshan belt was accomplished during Triassic–Early Jurassic time, and that Late Jurassic structures modified and locally ponded sediments from a well‐developed southward drainage system developed atop this older orogen. Although Upper Jurassic strata are widespread throughout the Yanshan belt, it is clear that these strata developed within several discrete intermontane basins that are not correlable across the belt as a single entity. Thus, the Yanshan has no obvious associated foreland basin, and determining where the Mesozoic erosional products of this orogen ultimately lie is one of the more intriguing unresolved questions surrounding the palaeogeography of North China.  相似文献   

9.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

10.
Ford  Lickorish  & Kusznir 《Basin Research》1999,11(4):315-336
Tertiary foreland sedimentation in SE France occurred along the western sidewall of the Alpine orogen during collision of the Apulian indentor with the European passive margin. A detailed reappraisal of the stratigraphy and structure of the Southern Subalpine Chains (SSC) in SE France shows that Tertiary depocentres of differing character developed progressively toward the foreland during ongoing SW-directed shortening. The geodynamic controls on each of four stages of basin development are evaluated using a flexural isostatic modelling package of thrust sheet emplacement and foreland basin formation. (1) The initial stage (mid to late Eocene) can be explained as a flexural basin that migrated toward the NW, closing off to the SW against the uplifting Maures–Esterel block. This broad, shallow basin can be reproduced in forward modelling by loading a lower lithospheric plate with an effective elastic thickness of 20 km. (2) The end of detectable flexural subsidence in the early Oligocene coincides with the emplacement of the internally derived Embrunais–Ubaye (E-U) nappes, which caused 11 km of SW-directed shortening in the underlying SSC. The lack of Oligocene flexural subsidence dictates that the E-U units were emplaced as gravitational nappes. Within the SSC, Oligocene sedimentation was restricted to small thrust-sheet-top basins recording mainly continental conditions and ongoing folding. Further west, Oligocene to Aquitanian NNW–SSE extension generated the Manosque half-graben as part of the European graben system that affected an area from the Gulf of Lion to the Rhine graben. (3) Following the Burdigalian breakup of the Gulf of Lion rift, a marine transgression migrated northward along the European graben system. Subsequent thermal subsidence allowed 1 km of marine sediments to be deposited across the Valensole and Manosque blocks, west of the active SSC thrust belt. (4) Mio-Pliocene conglomeratic deposits (2 km thick) were trapped within the Valensole basin by the uplifting Vaucluse block to the west and the advancing Alpine thrust sheets to the east. Late Pliocene thrusting of the SSC across the Valensole basin (approx. 10.5 km) can be linked along a Triassic detachment to the hinterland uplift of the Argentera basement massif.  相似文献   

11.
Multiple episodes of extensional tectonism dominated the formation of Mesozoic fault-bounded basins on the Grand Banks of Newfoundland, the Irish Continental Shelf and the central North Sea. A range of structural and stratigraphic responses in the Jeanne d'Arc, Porcupine and Moray Firth basins support widespread synchronous tectonic controls on sedimentation during one of these episodes, the Late Cimmerian. Rifting was preceded by a phase of related tectonism during which subsidence rates began to vary across broad areas but without significant fault block rotation. This Late Cimmerian ‘onset warp’ pattern of subsidence is considered to have been essential in the establishment of restricted anoxic basins from latest Oxfordian through Kimmeridgian (sensu gallico) time and the development of one prolific layer of organic-rich source rocks. The most prominent and widely recognized structural/lithostratigraphic response to Late Cimmerian rifting was the deposition of sediment wedges. Tithonian to early Valanginian strata generally thicken- into northerly trending faults in the Jeanne d'Arc and Porcupine basins, indicating that extensional stress was orientated WNW-ESE across a very broad area. The misalignment of this regional Late Cimmerian extensional stress with local inherited structural fabric may be responsible for transpressional uplift of individual fault blocks in the Outer Moray Firth basin. Sedimentological responses to Late Cimmerian rifting were varied, though a common lithofacies stacking pattern is recognized. Variably thick conglomerates and/or sandstones were widely deposited at the start of rift deformation, while palaeoenvironments ranged from alluvial and braid plain to submarine fan even within individual basins. The relatively coarse basal sediments fine upwards into a second layer of commonly organic-rich shales and mark The widest variations in palaeoenvironments and sediment thicknesses occurred during the last phase of Late Cimmerian rift tectonism, though all three basins show evidence of decreasing water depths, increasing oxygen levels and increasing grain size. This lithofacies stacking pattern of relatively coarse to fine to coarse (reservoir/source/reservoir) and the development of bounding unconformities are largely attributable to progressive changes in rift-controlled subsidence. Rift basin subsidence rates are interpreted to increase from a low at initiation of faulting to a mid-rift peak, followed by slowing subsidence to the end of extension. A number of counteracting crustal mechanisms that may account for progressive variations in rift-induced subsidence are considered.  相似文献   

12.
Seven tectonic subsidence curves, based on outcrop data, have been calculated in order to constrain the geodynamic evolution of the Permian–Mesozoic sedimentary succession (up to 10 km thick) of the Central Southern Alps basin (Italy). The analysis of the tectonic subsidence curves, covering a time span of about 200 Ma, allowed us to quantify the subsidence rates, to document the activity of syndepositional fault systems and calculate their slip rates. Different stages, in terms of duration and magnitude of subsidence‐uplift trends, have been identified in the evolution of the basin. The fault activity, reconstructed by comparing subsidence curves from adjacent sectors, resulted as highly variable both temporally and spatially. Strike‐slip tectonics was coeval to Permian sedimentation, as suggested by the strong differences in the subsidence rates in the sections. The evolution and subsidence rates suggest a continental shelf deposition from Early Triassic to Carnian, when subsidence came to a stop. A rapid resumption of subsidence is observed from the Norian, with a subsidence pulse in the Late Norian, followed by the regional uplift, in the Late Rhaetian. The following Early Jurassic subsidence is characterized by tectonic subsidence similar to that of the Norian. The Norian and Early Jurassic pulses were characterized by the highest slip rates along growth faults and are identified as two distinct tectonic events. The Norian–Rhaetian event is tentatively related to transtensional tectonics whereas the Early Jurassic event is related to crustal extension. The Early Jurassic subsidence records a shift in space an time of the beginning of the extensional stage, from Late Hettangian to the east to Late Pliensbachian–Toarcian to the west. From the Toarcian to the Aptian, the curves are compatible with regional thermal subsidence, later followed (Albian–Cenomanian) by uplift pulses in a retrobelt foreland basin (from Cenomanian onward).  相似文献   

13.
During the Early Triassic the Jameson Land Basin (Central East Greenland) was located around 30° N, in the Northern arid belt, but by the Early Jurassic was positioned at a latitude of approximately 50° N. This study examines the record of this transition through a largely continental succession using clay mineralogy, sedimentology, petrography and heavy mineralogy. The Jameson Land Basin is aligned north–south and is 280 km long and 80 km wide. Following an Early Triassic marine phase the basin was filled by predominantly continental sediments. The Early‐to‐Late Triassic succession comprises coarse alluvial clastics (Pingo Dal Formation) overlain by a succession of fine‐grained evaporite‐rich playa/lacustrine sediments (Gipsdalen Formation), indicative of arid climatic conditions. The overlying buff, dolomitic and then red lacustrine mudstones with subordinate sandstones (Fleming Fjord Formation) record reduced aridity. The uppermost Triassic grades into dark organic‐rich, and in places coaly, mudstones and buff coarse‐grained sandstones of lacustrine origin that belong to the Kap Stewart Group, which spans the Triassic–Jurassic boundary, and appear to record more humid climatic conditions. Clay mineralogy analyses highlight significant variations in the kaolinite/illite ratio, from both mudstone and sandstone samples, through the Triassic and into the earliest Jurassic. Complementary heavy mineral analyses demonstrate that the variations recognised in clay mineralogy and sandstone maturity through the Triassic–Early Jurassic succession are not a product of major provenance change or the effect of significant diagenetic alteration. The observed variations are consistent with sedimentological evidence for a long‐term trend towards more humid conditions through the Late Triassic to Early Jurassic, and the suggestion of a significant pluvial episode in the mid‐Carnian.  相似文献   

14.
The Dzereg Basin is an actively evolving intracontinental basin in the Altai region of western Mongolia. The basin is sandwiched between two transpressional ranges, which occur at the termination zones of two regional‐scale dextral strike‐slip fault systems. The basin contains distinct Upper Mesozoic and Cenozoic stratigraphic sequences that are separated by an angular unconformity, which represents a regionally correlative peneplanation surface. Mesozoic strata are characterized by northwest and south–southeast‐derived thick clast‐supported conglomerates (Jurassic) overlain by fine‐grained lacustrine and alluvial deposits containing few fluvial channels (Cretaceous). Cenozoic deposits consist of dominantly alluvial fan and fluvial sediments shed from adjacent mountain ranges during the Oligocene–Holocene. The basin is still receiving sediment today, but is actively deforming and closing. Outwardly propagating thrust faults bound the ranges, whereas within the basin, active folding and thrusting occurs within two marginal deforming belts. Consequently, active fan deposition has shifted towards the basin centre with time, and previously deposited sediment has been uplifted, eroded and redeposited, leading to complex facies architecture. The geometry of folds and faults within the basin and the distribution of Mesozoic sediments suggest that the basin formed as a series of extensional half‐grabens in the Jurassic–Cretaceous which have been transpressionally reactivated by normal fault inversion in the Tertiary. Other clastic basins in the region may therefore also be inherited Mesozoic depocentres. The Dzereg Basin is a world class laboratory for studying competing processes of uplift, deformation, erosion, sedimentation and depocentre migration in an actively forming intracontinental transpressional basin.  相似文献   

15.
《Basin Research》2018,30(Z1):336-362
The subsidence evolution of the Tethyan Moroccan Atlas Basin, presently inverted as the Central High Atlas, is characterized by an Early Jurassic rifting episode, synchronous with salt diapirism of the Triassic evaporite‐bearing rocks. Two contrasting regions of the rift basin – with and without salt diapirism – are examined to assess the effect of salt tectonics in the evolution of subsidence patterns and stratigraphy. The Djebel Bou Dahar platform to basin system, located in the southern margin of the Atlas Basin, shows a Lower Jurassic record of normal faulting and lacks any evidence of salt diapirism. In contrast, the Tazoult ridge and adjacent Amezraï basin, located in the centre of the Atlas Basin, reveals spectacular Early Jurassic diapirism. In addition, we analyse alternative Central High Atlas post‐Middle Jurassic geohistories based on new thermal and burial models (GENEX® 4.0.3 software), constrained by new vitrinite reflectance data from the Amezraï basin. The comparison of the new subsidence curves from the studied areas with published subsidence curves from the Moroccan Atlas, the Saharan Atlas (Algeria) and Tunisian Atlas show that fast subsidence peaks were diachronous along the strike, being younger towards the east from Early–Middle Jurassic to Late Cretaceous. This analysis also evidences a close relationship between these high subsidence rate episodes and salt diapirism.  相似文献   

16.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

17.
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures.  相似文献   

18.
Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia   总被引:3,自引:1,他引:3  
Eastward Andean orogenic growth since the late Oligocene led to variable crustal loading, flexural subsidence and foreland basin sedimentation in the Chaco basin. To understand the interaction between Andean tectonics and contemporaneous foreland development, we analyse stratigraphic, sedimentologic and seismic data from the Subandean Belt and the Chaco Basin. The structural features provide a mechanism for transferring zones of deposition, subsidence and uplift. These can be reconstructed based on regional distribution of clastic sequences. Isopach maps, combined with sedimentary architecture analysis, establish systematic thickness variations, facies changes and depositional styles. The foreland basin consists of five stratigraphic successions controlled by Andean orogenic episodes and climate: (1) the foreland basin sequence commences between ~27 and 14 Ma with the regionally unconformable, thin, easterly sourced fluvial Petaca strata. It represents a significant time interval of low sediment accumulation in a forebulge‐backbulge depocentre. (2) The overlying ~14–7 Ma‐old Yecua Formation, deposited in marine, fluvial and lacustrine settings, represents increased subsidence rates from thrust‐belt loading outpacing sedimentation rates. It marks the onset of active deformation and the underfilled stage of the foreland basin in a distal foredeep. (3) The overlying ~7–6 Ma‐old, westerly sourced Tariquia Formation indicates a relatively high accommodation and sediment supply concomitant with the onset of deposition of Andean‐derived sediment in the medial‐foredeep depocentre on a distal fluvial megafan. Progradation of syntectonic, wedge‐shaped, westerly sourced, thickening‐ and coarsening‐upward clastics of the (4) ~6–2.1 Ma‐old Guandacay and (5) ~2.1 Ma‐to‐Recent Emborozú Formations represent the propagation of the deformation front in the present Subandean Zone, thereby indicating selective trapping of coarse sediments in the proximal foredeep and wedge‐top depocentres, respectively. Overall, the late Cenozoic stratigraphic intervals record the easterly propagation of the deformation front and foreland depocentre in response to loading and flexure by the growing Intra‐ and Subandean fold‐and‐thrust belt.  相似文献   

19.
A magnetostratigraphy‐based chronological framework has been constructed in the Eocene sediments of the Montserrat alluvial fan/fan‐delta complex (southeast Ebro Basin), in order to unravel forcing controls on their sequential arrangement and to revise the tectonosedimentary history of the region. The palaeomagnetic study is based on 403 sites distributed along an 1880‐m‐thick composite section, and provides improved temporal constraints based on an independent correlation to the geomagnetic polarity time scale. The new chronological framework together with sequence stratigraphy and geohistory analysis allow us to investigate the interplay between factors controlling the sequential arrangement of the Montserrat complex at the different temporal scales and to test for orbitally driven climate forcing. The results suggest that the internal stacking pattern in transgressive and regressive sequences sets within the more than 1000‐m‐thick Milany Composite Megasequence can be explained as the result of subsidence‐driven accommodation changes under a general increase of sediment supply. Composite sequences (tens to hundreds of metres thick) likely reflect orbitally forced cyclicity related to the 400‐kyr eccentricity cycle, possibly controlled by climatically induced sea‐level fluctuations. This study also provides new insights on the deformational history of the area, and shows a correlation between (tectonic) subsidence and forelimb rotation measured on basin‐margin deformed strata. Integration of subsidence curves from different sectors of the eastern Ebro Basin allows us to estimate the variable contribution of tectonic loads from the two active basin margins: the Catalan Coastal Ranges and the Pyrenees. The results support the presence of a double flexure from Late Lutetian to Late Bartonian, associated with the two tectonically active margins. From Late Bartonian to Early Priabonian the homogenization of subsidence values is interpreted as the result of the coupling of the two sources of tectonic load.  相似文献   

20.
Lower Cretaceous early syn‐rift facies along the eastern flank of the Eastern Cordillera of Colombia, their provenance, and structural context, reveal the complex interactions between Cretaceous extension, spatio‐temporal trends in associated sedimentation, and subsequent inversion of the Cretaceous Guatiquía paleo‐rift. South of 4°30′N lat, early syn‐rift alluvial sequences in former extensional footwall areas were contemporaneous with fan‐delta deposits in shallow marine environments in adjacent hanging‐wall areas. In general, footwall erosion was more pronounced in the southern part of the paleorift. In contrast, early syn‐rift sequences in former footwall areas in the northern rift sectors mainly comprise shallow marine supratidal sabkha to intertidal strata, whereas hanging‐wall units display rapid transitions to open‐sea shales. In comparison with the southern paleo‐rift sector, fan‐delta deposits in the north are scarce, and provenance suggests negligible footwall erosion. The southern graben segment had longer, and less numerous normal faults, whereas the northern graben segment was characterized by shorter, rectilinear faults. To the east, the graben system was bounded by major basin‐margin faults with protracted activity and greater throw as compared with intrabasinal faults to the west. Intrabasinal structures grew through segment linkage and probably interacted kinematically with basin‐margin faults. Basin‐margin faults constitute a coherent fault system that was conditioned by pre‐existing basement fabrics. Structural mapping, analysis of present‐day topography, and balanced cross sections indicate that positive inversion of extensional structures was focused along basin‐bounding faults, whereas intrabasinal faults remained unaffected and were passively transported by motion along the basin‐bounding faults. Thus, zones of maximum subsidence in extension accommodated maximum elevation in contraction, and former topographic highs remained as elevated areas. This documents the role of basin‐bounding faults as multiphased, long‐lived features conditioned by basement discontinuities. Inversion of basin‐bounding faults was more efficient in the southern than in the northern graben segment, possibly documenting the inheritance and pivotal role of fault‐displacement gradients. Our observations highlight similarities between inversion features in orogenic belts and intra‐plate basins, emphasizing the importance of the observed phenomena as predictive tools in the spatiotemporal analysis of inversion histories in orogens, as well as in hydrocarbon and mineral deposits exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号