首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A NOAA-11 SBUV/2 Mgii solar activity proxy index has been created for the period February 1989 through October 1994 from the daily discrete mode solar irradiance data using an algorithm that utilizes a thorough instrument characterization. This product represents a significant improvement over the previously released NOAA-11 SBUV/2 sweep mode-based Mgii data set. As measured by the NOAA-11 Mgii index, the amplitude of solar rotational activity declined from approximately 4–7% peak-to-peak near the maximum of solar cycle 22 in 1989–1991 to roughly 1% peak-to-peak by late-1994. Corresponding to this decrease, the 27-day averaged NOAA-11 Mgii index decreased by 5.8% over this period. The NOAA-11 Mgii data set is compared with coincident data sets from the UARS SOLSTICE and SUSIM instruments. The impact of differences in instrument resolution and observation platform are examined with respect to both the absolute value and temporal variations of the Mgii index. Periodograms of the three indexes demonstrate comparable solar variation tracking. Between October 1991 and October 1994 predominate power occurs near 27 days, with secondary maxima in the power spectra near 29 and 25 days. Overall, there is low power near 13.5 days during this period. Dynamic power spectral analysis reveals the quasi-periodic and quasi-stationary nature of the middle UV variations tracked by the Mgii index, and periods of significant power near 13.5 days in mid-1991 and late-1994 through mid-1995.  相似文献   

2.
The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) has measured the solar spectral irradiance for wavelengths 115–410 nm on a daily basis since October 11, 1991. The absolutely calibrated solar UV irradiances through January 8, 1996 have been produced. Their time-dependent behavior is similar to that of the Mgii index as measured both by NOAA-9 SBUV and by SUSIM itself. The maximum long-term variation observed by SUSIM is at L and is measured to be in excess of a factor of 2. This maximum variation decreases with increasing wavelength until about 300 nm where no significant long-term variation is directly measured above SUSIM's estimated 1–2% relative accuracy. The wavelength dependence of the measured UV variability is found to roughly correspond to the mean emission height given by solar atmospheric radiative transfer models. Because SUSIM observations began when solar activity was near its peak and now extend to very near its minimum, estimates of the solar cycle 22 UV variability are generated from a combination of these measurements and solar activity proxy indices.  相似文献   

3.
The solar Mgii core-to-wing ratio is a useful index of UV variability throughout the solar cycle because it has been measured since 1978 in a series of successive satellite missions: Nimbus 7, Solar Mesosphere Explorer (SME), the NOAA 9–14 series, Upper Atmosphere Research Satellite (UARS), and ERS-2. Eventual construction of a single time series from 1978 to the present by combining these measurements will give a long record of almost daily UV variability to serve as a surrogate for estimating both UV and EUV solar radiation. Here we address the effect of spectral resolution on determination of both long-term and short-term solar variability from this index. We use UARS/SOLSTICE measurements of the Mgii line from October 1991 to December 1996 to study the effect of two spectral resolution regimes characteristic of existing measurements, 0.20 to 0.25 nm and 1.10 to 1.15 nm, on determination of the amplitude of 27-day rotational modulation and the more gradual change in chromospheric radiation in the declining phase of solar cycle 22. The two Mgii indices give solar variations that differ by a scaling factor of 2× for both the solar cycle change from 1992 to 1997 and the amplitude of 27-day modulation over the same period. Both types of measurements appear to yield solar signal equally well except at solar minimum when the solar changes become quite small.  相似文献   

4.
The Mg II Index is a proxy indicator of solar UV activity which is produced from measurements of the chromospheric Mg II absorption line at 280 nm. Mg II index data sets have been derived from the NOAA-9 and NOAA-11 SBUV/2 irradiance data sets using both discrete scan measurements about the Mg II line and continuous scan (sweep) measurements over the UV spectrum from 160–400 nm. This paper will discuss the rationale behind the creation of the different Mg II index products, and make a quantitative assessment of the differences between these products. Recommendations for future use of the Mg II index will also be presented.  相似文献   

5.
The Global Ozone Monitoring Experiment (GOME) is the first of a series of European satellite instruments monitoring global ozone and other relevant trace constituents in the UV/visible spectral range. On 20 April 1995, the European Space Agency (ESA) launched the GOME from Kourou, French Guyana, aboard the second European Remote Sensing satellite (ERS-2). In order to obtain the geometric albedo from the backscattered terrestrial radiance measurements, a solar irradiance measurement sequence in the spectral range between 240 nm and 790 nm is carried out once every day. The GOME solar irradiance is recorded at a moderate spectral resolution (0.2–0.4 nm), thus providing an excellent opportunity to contribute to the long-term investigation of solar flux variation associated with the 11-year solar activity cycle from space, which started in 1978 with SBUV (Solar Backscatter UV Experiment) observations on Nimbus-7 and covers solar cycles 21 and 22. This paper briefly describes the GOME spectrometer and measurement mode which are relevant to the solar viewing. Preliminary results from the solar irradiance measurements between 1995 and 1997 and comparisons to SSBUV-8 (Shuttle SBUV) in January 1996 are presented. Solar activity indices used as proxies for solar flux variation are often used to find a correlation with observed variation in atmospheric quantities, for instance, total ozone. Initial results from the GOME Mgii (280 nm) and Caii K (393 nm) solar activity index calculation are presented and discussed. The coupling of solar irradiance variability to global change is a current source of scientific and public concern. This study shows that GOME/ERS-2 (1995–2001) and the next generation of European remote sensing instruments, SCIAMACHY and GOME/METOP, have the potential to provide continuity in the measurements of solar irradiance from space well into the next century.  相似文献   

6.
Simultaneous solar total irradiance observations performed by absolute radiometers on board satellites during the quiet-Sun period between solar cycles 21 and 22 (1985–1987), are analyzed to determine the solar total irradiance at 1 AU for the solar minimum. During the quiet-Sun period the total solar irradiance, UV irradiance, and the various solar activity indices show very little fluctuation. However, the absolute value of the solar total irradiance derived from the observations differ within the accuracy of the radiometers used in the measurements. Therefore, the question often arises about a reference value of the solar total irradiance for use in climate models and for computation of geophysical, and atmospheric parameters. This research is conducted as a part of the Solar Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22). On the basis of the study we recommended a reference value of 1367.0 ± 0.04 W m-2 for the solar total irradiance at 1 AU for a truly quiet Sun. We also find that the total solar irradiance data for the quiet-Sun period reveals strong short-term irradiance variations.  相似文献   

7.
Understanding the magnitude and temporal structure of variations in solar ultraviolet and extreme ultraviolet irradiance is critical to understanding solar forcing of the Earth's upper and middle atmosphere and hence to assessing the relative impact of natural and anthropogenic influences on Earth's atmospheric environment. Satellite based measurements of such variations are limited to recent times, are short in duration and subject to gaps making necessary ground-based surrogates with longer and more continuous coverage. Using indices derived from synoptic solar magnetograms taken at the Mount Wilson 150-foot solar tower, we have constructed models of several UV and near EUV lines and fluxes which correlate strongly (r > 0.90) with satellite data. These lines and fluxes include the Mgii h and k core-to-wing ratio, the Lα line and the 200–205 nm flux.  相似文献   

8.
We have compared total solar irradiance from Nimbus-7 with ground-based photometry from the San Fernando Observatory (SFO) for 109 days between June 1 and December 31, 1988. We have also included in some analyses NOAA-9 SBUV2 data orF10.7 radio flux. The Nimbus-7 data are from orbital samples, averaged to the mean time of observation at SFO. Using the same parameters as in Chapmanet al. (1992), the multiple regression gives anR 2 = 0.9131 and a solar minimum irradiance,S 0, = 1371.76 ± 0.18 W m–2 for the best fit.  相似文献   

9.
We have processed a 10-year set of BBSO Caii K-line filtergrams covering most of solar cycle 22. The excess K-line emission is integrated to form linear and square-root activity indices that are fitted to UV data from UARS and SME. Good fits are found both for the Mgii core–wing ratio (linear) and total L irradiance (square root) and the indices are thus good proxies for UV data. The SME L irradiance is systematically lower by 20% than predicted from our corresponding K-line indices. The 10.7 cm radio data confirms that SME underestimated the flux. The network is partly responsible for the solar cycle variation of the indices and is relatively more important in L than in Mgii and Caii K. This is due to the saturation of L equivalent width. We also report on substantial improvements to the equipment and reduction software. The system is now based on a digital CCD camera which promises more accurate measurements in the upcoming solar cycle 23.  相似文献   

10.
Total Solar Irradiance Measurement and Modelling during Cycle 23   总被引:1,自引:0,他引:1  
S. Mekaoui  S. Dewitte 《Solar physics》2008,247(1):203-216
During solar cycle 23, which is now close to its end, variations of the total solar irradiance were measured by six different instruments, providing four independent time series of the irradiance variation over the complete solar cycle. A new composite time series constructed using five of these six instruments provides unprecedented instrument stability for the study of the open question of solar irradiance variations between minima. An independent analysis of the different composite time series is performed through an empirical proxy model fit. The new composite is fitted with 0.96 correlation (R 2=93%) and RMS error of 0.15 W m−2, thus reaching the limit of the individual instrument stabilities. Both the measurements and the model indicate that for the current cycle the minimum irradiance level has not yet been reached. Therefore we use the model to extrapolate measurements up to 2008 when the minimum irradiance level is expected. If we assume that there will be no changes in the solar irradiance from 2006 to 2008 that are not captured by the regression model, it can be predicted that there will be no variation of the solar minimum irradiance level during cycle 23 with an uncertainty of ±0.14 W m−2.  相似文献   

11.
14C abundance on the Earth can be modulated by both the solar wind and irradiance components of the solar cycle. The magnetic field component of the solar wind modulates 14C production whereas the irradiance component can result in a change in the exchange rate between the various reservoirs of the carbon biogeochemical cycle. The effects would be nearly synchronous and difficult to separate. The 0.1% amplitude of irradiance variation during the two most recent solar cycles is well known. A 22-yr cycle exists also in the measured global temperature record.We have divided the University of Washington high-precision data on14C in tree rings into three 91-yr intervals: AD 1540–1630, 1630–1720 and 1715–1805, before, during and after the Maunder Minimum. Unfortunately the AD 1540–1630 interval includes part of the Spörer Minimum as well as the intermediate interval of high solar activity. These data were analyzed by the DFT, MEM and MTM methods of spectral time series analysis. The ca. 22-yr cycle is prominent during the Maunder Minimum, whereas the 11-yr cycle is most prominent after the Maunder Minimum but totally suppressed during the Maunder Minimum. The lesser amplitude of the 11-yr cycle before the Maunder Minimum is most probably due to overlap with the Spörer Minimum.Vasiliev and Kocharov VK83 have previously suggested that the 22-yr cycle persists through the Maunder Minimum whereas the 11-yr cycle is suppressed. Our calculations show that irradiance forcing of the carbon cycle during the 11-yr cycle is negligible, so the observed 11-yr cycle in14 C must be the result of production rate changes. The presence of the 22-yr cycle and suppression of the 11-yr cycle during the Maunder Minimum is in accord with a model by Jokipii Jok91.  相似文献   

12.
The solar ultraviolet irradiance measurements in the 120–400 nm wavelength range are reviewed and compared showing still important discrepancies between the irradiance values deduced from the most recent observations.The possible variations of the solar ultraviolet irradiances with the 27-day rotation period of the Sun and with the 11-year activity cycle are presented and discussed on the basis of the available irradiation fluxes obtained during the rising phase of solar cycle 21.The spectral features of both kinds of variation are clearly related to the solar atmospheric layer from which the corresponding radiation is emitted.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

13.
The daily images and magnetograms acquired by MDI are a rich source of information about the contributions of different types of solar regions to variations in the total solar irradiance (TSI). These data have been used to determine the temporal variation of the MDI irradiance, the mean intensity of the solar disk in the continuum at 676.8 nm. The short-term (days to weeks) variations of the MDI irradiance and TSI are in excellent agreement with rms differences of 0.011%. This indicates that MDI irradiance is an excellent proxy for short-term variations of TSI from the competing irradiance contributions of regions causing irradiance increases, such as plages and bright network, and regions causing irradiance decreases, such as sunspots. However, the long-term or solar cycle variation of the MDI proxy and TSI differ over the 11-year period studied. The results indicate that the primary sources of the long-term (several months or more) variations in TSI are regions with magnetic fields between about 80 and 600 G. The results also suggest that the difference in the long-term variations of the MDI proxy and TSI is due to a component of TSI associated with sectors of the solar spectrum where the contrast in intensity between plages and the quiet Sun is enhanced (e.g., the UV) compared to the MDI proxy. This is evidence that the long-term variation of TSI is due primarily to solar cycle variations of the irradiance from these portions of solar spectrum, a finding consistent with modeling calculations indicating that approximately 60% of the change in TSI between solar minimum and maximum is produced by the UV part of the spectrum shortward of 400 nm (Solanki and Krivova, Space Sci. Rev. 125, 53, 2006).  相似文献   

14.
Regular solar spectral irradiance (SSI) observations from space that simultaneously cover the UV, visible (vis), and the near-IR (NIR) spectral region began with SCIAMACHY aboard ENVISAT in August 2002. Up to now, these direct observations cover less than a decade. In order for these SSI measurements to be useful in assessing the role of the Sun in climate change, records covering more than an eleven-year solar cycle are required. By using our recently developed empirical SCIA proxy model, we reconstruct daily SSI values over several decades by using solar proxies scaled to short-term SCIAMACHY solar irradiance observations to describe decadal irradiance changes. These calculations are compared to existing solar data: the UV data from SUSIM/UARS, from the DeLand & Cebula satellite composite, and the SIP model (S2K+VUV2002); and UV-vis-IR data from the NRLSSI and SATIRE models, and SIM/SORCE measurements. The mean SSI of the latter models show good agreement (less than 5%) in the vis regions over three decades while larger disagreements (10 – 20%) are found in the UV and IR regions. Between minima and maxima of Solar Cycles 21, 22, and 23, the inferred SSI variability from the SCIA proxy is intermediate between SATIRE and NRLSSI in the UV. While the DeLand & Cebula composite provide the highest variability between solar minimum and maximum, the SIP/Solar2000 and NRLSSI models show minimum variability, which may be due to the use of a single proxy in the modeling of the irradiances. In the vis-IR spectral region, the SCIA proxy model reports lower values in the changes from solar maximum to minimum, which may be attributed to overestimations of the sunspot proxy used in modeling the SCIAMACHY irradiances. The fairly short timeseries of SIM/SORCE shows a steeper decreasing (increasing) trend in the UV (vis) than the other data during the descending phase of Solar Cycle 23. Though considered to be only provisional, the opposite trend seen in the visible SIM data challenges the validity of proxy-based linear extrapolation commonly used in reconstructing past irradiances.  相似文献   

15.
The solar extreme ultraviolet (EUV) irradiance, the dominant global energy source for Earth's atmosphere above 100 km, is not known accurately enough for many studies of the upper atmosphere. During the absence of direct solar EUV irradiance measurements from satellites, the solar EUV irradiance is often estimated at the 30–50% uncertainty level using both proxies of the solar irradiance and earlier solar EUV irradiance measurements, primarily from the Air Force Geophysics Laboratory (now Phillips Laboratory) rockets and Atmospheric Explorer (AE) instruments. Our sounding rocket measurements during solar cycle 22 include solar EUV irradiances below 120 nm with 0.2 nm spectral resolution, far ultraviolet (FUV) airglow spectra below 160 nm, and solar soft X-ray (XUV) images at 17.5 nm. Compared to the earlier observations, these rocket experiments provide a more accurate absolute measurement of the solar EUV irradiance, because these instruments are calibrated at the National Institute of Standards and Technology (NIST) with a radiometric uncertainty of about 8%. These more accurate sounding-rocket measurements suggest revisions of the previous reference AE–E spectra by as much as a factor of 2 at some wavelengths. Our sounding-rocket flights during the past several years (1988–1994) also provide information about solar EUV variability during solar cycle 22.  相似文献   

16.
Knowledge of solar spectral irradiance (SSI) is important in determining the impact of solar variability on climate. Observations of UV SSI have been made by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmosphere Research Satellite (UARS), the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE), and the Solar Irradiance Monitor (SIM), both on the Solar Radiation and Climate Experiment (SORCE) satellite. Measurements by SUSIM and SORCE overlapped from 2003 to 2005. SUSIM and SORCE observations represent ~?20 years of absolute UV SSI. Unfortunately, significant differences exist between these two data sets. In particular, changes in SORCE UV SSI measurements, gathered at moderate and minimum solar activity, are a factor of two greater than the changes in SUSIM observations over the entire solar cycle. In addition, SORCE UV SSI have a substantially different relationship with the Mg ii index than did earlier UV SSI observations. Acceptance of these new SORCE results impose significant changes on our understanding of UV SSI variation. Alternatively, these differences in UV SSI observations indicate that some or all of these instruments have changes in instrument responsivity that are not fully accounted for by the current calibration. In this study, we compare UV SSI changes from SUSIM with those from SIM and SOLSTICE. The primary results are that (1) long-term observations by SUSIM and SORCE generally do not agree during the overlap period (2003?–?2005), (2) SUSIM observations during this overlap period are consistent with an SSI model based on Mg ii and early SUSIM SSI, and (3) when comparing the spectral irradiance for times of similar solar activity on either side of solar minimum, SUSIM observations show slight differences while the SORCE observations show variations that increase with time between spectra. Based on this work, we conclude that the instrument responsivity for SOLSTICE and SIM need to be reevaluated before these results can be used for climate-modeling studies.  相似文献   

17.
Storini  Marisa  Sýkora  Július 《Solar physics》1997,176(2):417-430
The existence of a 22-year heliomagnetic cycle was inferred long ago not only from direct measurements of the solar magnetic field but also from a cyclic variability of a number of the solar activity phenomena. In particular, it was stated (a rule derived after Gnevyshev and Ohl (1948) findings and referenced as the G–O rule in the following) that if sunspot number Rz cycles are organized in pairs of even–odd numbered cycles, then the height of the peak in the curve of the yearly-averaged sunspot numbers Rz-y is always lower for a given even cycle in comparison with the corresponding height of the following odd cycle. Exceptions to this rule are only cycles 4 and 8 which, at the same time, are the nearest even cycles to the limits of the so-called Dalton minimum of solar activity (i.e., the 1795–1823 time interval). In the present paper, we are looking for traces of the mentioned G–O rule in green corona brightness (measured in terms of the Fexiv 530.3 nm emission line intensity), using data covering almost five solar cycles (1943–1994). It was found that the G–O rule seems to work within the green-line corona brightness, namely, when coronal intensity measured in an extended solar middle-latitude zone is considered separately from the rest of the solar surface. On the other hand, the same G–O rule is valid at the photospheric level, as the heliographic latitudinal dependence of sunspot numbers (1947–1984) shows.  相似文献   

18.
Interplanetary scintillation measurements obtained inside 200 R using the Ooty Radio Telescope during August 1986–April 1991 have been analysed to study the interplanetary disturbances (or events) and their occurrence rates at various phases of the solar cycle. The disturbances are identified by the increase in the level of scintillation compared with the expected value. In total, 735 events have been identified. The results show a rate of 0.49 events per day near solar maximum and a low rate of 0.16 events per day during minimum of activity. The results are compared with coronal mass ejection (CME) rates and transients rates obtained from the Doppler scintillation measurements.  相似文献   

19.
The first results obtained with the Solar EUV Monitor (SEM), part of the Charge, Element, and Isotope Analysis System (CELIAS) instrument, aboard the SOlar and Heliospheric Observatory (SOHO) satellite are presented. The instrument monitors the full-disk absolute value of the solar Heii irradiance at 30.4 nm, and the full-disk absolute solar irradiance integrated between 0.1 nm and 77 nm. The SEM was first turned on December 15, 1995 and obtained ‘first light’ on December 16, 1995. At this time the SOHO spacecraft was close to the L-1 Lagrange point, 1.5 × 106 km from the Earth towards the Sun. The data obtained by the SEM during the first four and a half months of operation will be presented. Although the period of observation is near solar minimum, the SEM data reveal strong short-term solar irradiance variations in the broad-band, central image channel, which includes solar X-ray emissions.  相似文献   

20.
This paper presents a statistical comparison of the solar total irradiance measured from the Nimbus-7, the Solar Maximum Mission (SMM), the Earth Radiation Budget Satellite (ERBS), and the Upper Atmosphere Research Satellite (UARS) spacecraft platforms, for the period 1985 –1992. The mean irradiance, standard deviation, and the correlation among the daily irradiance remained high during periods of high solar activity. Linear regression models are established to estimate the irradiance measurements from one platform by the others. The results are consistent with the observations. However, the Nimbus-7 ERB responses show a drift during 1989–1992. The absolute irradiance observed by each instrument varies within the uncertainty associated with the corresponding radiometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号