首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Static and dynamic active earth pressure   总被引:1,自引:1,他引:0  
Summary The dynamic active earth pressure on retaining structures due to seismic loading is commonly obtained by using the modified Coulomb's approach which is known as the Mononobe-Okabe method. This method has generally been used for cohesionless soils only. A general solution for the determination of total (i.e. static and dynamic) active earth force for a c- soil as backfill was developed by Prakash and Saran in 1966 based on the simplifying assumption that adhesion between the wall-soil interface is equal to the cohesion of the soil, that the surface of the backfill is horizontal, and that the effect of the vertical acceleration can be neglected. This note presents an improved method for calculating the static and dynamic active force behind a rigid retaining wall based on its geometry, inclination of the backfill, surcharge, strength parameters of the backfill, and the adhesion between the wall face and the soil. The effects of adhesion, inclination of backfill, and vertical components of seismic loading for a typical retaining wall are discussed.  相似文献   

2.
The thermodynamic properties of non-ideal binary solutions were investigated. By using reduced temperatures (T/T critical mixing) and comparing the width of the solvi in very different binary systems, a uniform relation for several systems is obtained for which the concept of corresponding solvi is introduced.A graphical method is developed to determine Margules parameters from two-phase regions in solid solutions. Graphs are presented for binodal — as well as spinodal solvi. The Margules parameters obtained with these graphs are comparable with the calculated ones.In well investigated systems from the literature constant ratios of Margules parameters (W a /W b ) were recognized so far. Combining this observation with the concept of corresponding solvi, a tentative solvus can be constructed with a minimum of data.List of Symbols Used in the Calculations x Mole fraction of component B in solid solution - x 1 Mole fraction of component B in phase 1 - x 2 Mole fraction of component B in phase 2 - A 0 Chemical potential of 1 mole pure component A - B 0 Chemical potential of 1 mole pure component B - A(x), A Chemical potential of component A in solid solution - B(x), B Chemical potential of component B in solid solution - G Total Gibbs energy of the system - ¯G m (x), ¯Gm Molar Gibbs energy of solid solution - ¯G m E (x) Excess function - W a , W b Margules parameters - T Absolute temperature in K - P Pressure  相似文献   

3.
We apply the general concept of seismic risk analysis based on morphostructural analysis of the territory, pattern recognition of earthquake-prone nodes, and the Unified Scaling Law for Earthquakes, USLE, in another seismic region of Russia to the west from Lake Baikal, i.e., Altai–Sayan Region. The USLE generalizes the empirical Gutenberg–Richter relationship making use of apparently fractal distribution of earthquake sources of different size: \( \log_{10} N\left( {M,L} \right)\, = \,A\, + \,B \cdot \left( {5\, - \,M} \right)\, + \,C \cdot \log_{10} L, \) where N (M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The local estimates of A, B, and C allow determination of the expected maximum credible magnitude in a given time interval and the associated spread around ground shaking parameters (e.g., peak ground acceleration, PGA, or macroseismic intensity, I0). Compilation of the corresponding seismic hazard map of Altai–Sayan Region and its rigorous testing against the available seismic evidences in the past is used to model regional maps of specific earthquake risks for population, cities, and infrastructures.  相似文献   

4.
To estimate seismic hazard, the basic law of seismicity, the Gutenberg–Richter recurrence relation, is applied in a modified form involving a spatial term: $\log N\left( {M,\;L} \right) = A - B\left( {M - 5} \right) + C\log L$ , where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an area of linear size L. The parameters A, B, and C of this Unified Scaling Law for Earthquakes (USLE) in the Himalayas and surrounding regions have been studied on the basis of a variable space and time-scale approach. The observed temporal variability of the A, B, and C coefficients indicates significant changes of seismic activity at the time scales of a few decades. At global scale, the value of A ranges mainly between ?1.0 and 0.5, which determines the average rate of earthquakes that accordingly differs by a factor of 30 or more. The value of B concentrates about 0.9 ranging from under 0.6 to above 1.1, while the fractal dimension of the local seismic prone setting, C, changes from 0.5 to 1.4 and larger. For Himalayan region, the values of A, B, and C have been estimated mainly ranging from ?1.6 to ?1.0, from 0.8 to 1.3, and from 1.0 to 1.4, respectively. We have used the deterministic approach to map the local value of the expected peak ground acceleration (PGA) from the USLE estimated maximum magnitude or, if reliable estimation was not possible, from the observed maximum magnitude during 1900–2012. In result, the seismic hazard map of the Himalayas with spatially distributed PGA was prepared. Further, an attempt is made to generate a series of the earthquake risk maps of the region based on the population density exposed to the seismic hazard.  相似文献   

5.
Zusammenfassung Zusammenfassend ergibt sich aus der Untersuchung der Profile einer podsolierten Para-Braunerde and Para-Rendsina auf eihem kalkig gebundenen, feldspatreichen Sandstein des unteren Stubensandsteins folgender Verlauf der Verwitterung:Zunächst wird das kalkige Bindemittel herausgelöst. Dadurch entsteht ein hochporöses, hochdurchässiges Gerüst.Die Verwitterung zeigt sick im wesentlichen in einer Veränderung der Feldspite und einer Tonrnineralumbildung: Die Feldspäte warden aufgelöst, verbunden mit einern Kornzerfall in den Horizonten f (A1), Bfe und Ahe. Der primäre Illit verliert irn Verlauf der Verwitterung K+-Ionen und billet lurch Einlagerung von H3O+-Ionen quellfähige Schichten. Rises Entwicklung zeichnet sich vorwiegend im Oberboden ab. Dutch Einlagerung von Aluminiumhydroxid in die Zwischenschichten entsteht ein 14 Å-Mineral, vorwiegend im Bfe-Horizont.In dem wegen der Entkalkung hochporösen, hochdurchlässigen laden werden feinstkörnige Tonanteile durch herabsickerndes Wasser inechanisch verlagert. Dabei komInt es zu einer bevorzugten Anreicherung des feinerkörnigen Illits und des Mixed-Layer Illit-Montmorillonit im B t -Horizont, zurückbleibt das 14 Å-Mineral im Bfe-Horizont. Die Anreicherung im B t -Horizont führt zur Bildung eines auffallend plastischen Sandes (Honigsand).
Soil formation on calcite-cemented sandstone of the Middle Keuper (Stubensarldstein) is, studied in two profiles (Podsolierte Para-Braunerde and Para-Rendsina).The main results of weathering are: dissolution of calcite, alteration of feldspars and changes in the clay mineral composition.Solution of feldspars along cleavages and subsequent mechanical desintegration have caused a concentration of fine sand and silt in the top soil.Of the clay minerals in the soils, kaolinite, illite and part of the mixed layer illite-montmorillonite are inherited from the parent material.A. 14 Å mineral is restricted to the Bfe- and f(A1)-horizons of the podsolic profile. Ionic complexes of aluminium and hydroxyl released during feldspar alteration were fixed between the montmorillonite layers of the mixed layer mineral. This process, plus continuing supply of montmorillonite layers by the depletion of illite layers, resulted in the 14 Å mineral.The illite and the mixed layer mineral were found to be finer grained than the 14 Å mineral. Thus, the latter remained in the Bfe- and f(A1)-horizons, whereas the former minerals were washed down in the highly porous soil and concentrated in the Bt-horizon.
  相似文献   

6.
The Loon Lake pluton in the Grenville province of Southeastern Ontario consists of a quartz monzonite rim surrounding a monzonite core containing inclusions of gneiss, gabbro and diorite. The pluton was emplaced in amphibolite facies Apsley gneiss, amphibolite and marble. Abnormally high 18O values are observed in all igneous rock types: quartz monzonite (8.9–13.9), monzonite (8.9–9.7), diorite-gabbro (8.0–9.3). High 18O contents are attributable to interaction between pluton and country rocks, through either isotopic exchange or direct mixing of mobilizate anatectically produced in the contact aureole of the pluton.The Apsley gneiss displays a 18O range from 8.3 to 16.9. There is no difference in 18O distribution between rocks inside and outside the contact aureole, although intermineral isotopic fractionations in the aureole are smaller than those outside. A chemical composition discriminant function that distinguishes rocks of igneous origin (DF>0) from sedimentary (DF<0) is inversely correlated with 18O of the gneisses, indicating that low 18O values are inherited from a silicic volcanic protolith. Al2O3/Na2O, an index of maturity of sediments, increases with 18O for the DF<0 group but is almost constant for the DF>0 group over a 18O range from 8.3 to 13.4. The DF<0 group is inferred to have formed from a series of clastic sediments of varying degree of weathering or maturity; the DF>0 group formed either from tuffs partially altered to zeolites, or from hydrated volcanic flows or ignimbrites.  相似文献   

7.
Seismic bearing capacity of shallow strip footings   总被引:6,自引:0,他引:6  
Seismic bearing capacity of shallow strip footings in soil has been obtained in the form of pseudo-static seismic bearing capacity factors Ncd, Nqd and Nd, denoting the cohesion, surcharge and unit weight components, respectively, by an extensive numerical iteration technique. Limit equilibrium method of analysis with composite failure surface is assumed. The validity of the principle of superposition is examined. Effects of both the horizontal and vertical seismic acceleration coefficients have been found to always reduce the ultimate bearing capacity significantly. Results obtained by the present method of analysis are compared with the available results and are found to be the least in the seismic case.  相似文献   

8.
Summary The crystal structure of cesstibtantite has been solved from diffractometer data collected on samples from Leshaia, Russia and the Tanco pegmatite, Manitoba. Cesstibtantite from the Leshaia pegmatite (type locality) hasa 10.515(2) Å, space groupFd3m, composition Cs0.31(Sb0.57Na0.31Pb0.02Bi0.01)O.91(Ta1.88Nb0.12)2(O5.69[OH, F]0.31)6(OH, F)0.69, Z 8; its structure was refined toR 3.8,wR 4.3% using 96 observed (F > 3[F]) reflections (MoK). Cesstibtantite from the Tanco pegmatite hasa 10.496(1) Å, space groupFd3m, composition (Cs0.22K0.01)0.23(Na0.45Sb0.39Pb0.14· Ca0.06Bi0.02)1.06(Ta1.95Nb0.05)2(O5.78[OH,F]0.22)6(OH,F)0.55,Z 8; its structure was refined toR 3.9w R 3.7% using 104 observed reflections. Cesstibtantite differs from the normal pyrochlores in that it contains significant amounts of very large cations such as Cs. As these cations are too large (VIII[r] > 1.60 Å) for the conventional [8]-coordinated A site, they occupy the [18]-coordinated site, which normally contains monovalent anions. Natural cesstibtantite samples are non-ideal in that both Cs and monovalent anions occur at the site; thus cesstibtantite is intermediate to thenormal pyrochlores (with only monovalent anions at the site) and theinverse pyrochlores (with only large cations at the site).
Cesstibtantit—eine geologische Einfiihrung in die inversen Pyrochlore
Zusammenfassung Die Kristallstruktur von Cesstibtantit wurde auf der Basis von Diffraktometerdaten von Proben von Leshaia, Russland and dem Tanco Pegmatit, Manitoba, gelöst. Cesstibtantit aus dem Leshaia Pegmatit (Typlokalität) hat a 10.515(2) Å, RaumgruppeFd3m, die Zusammensetzung CS0.31(Sb0.57Na0.31Pb0.02Bi0.01)0.91(Ta1.88Nb0.12)2· (O5.69OH, F0.31)6(OH, F)0.69 Z 8; die Struktur wurde aufR 3.8,wR 4.3% verfeinert unter Benützung von 96 beobachteten Reflexen. Cesstibtantit vom Tanco Pegmatit hat a 10.496(1) Å, RaumgruppeFd3m, die Zusammensetzung (Cs0.22K0.01)0.23(Na0.45· Sb0.39Pb0.14Ca0.06Bi0.02)1.06(Ta1.95Nb0.05)2(O5.78OH,F0.22)6(OH,F)0.55,Z 8; seine Struktur wurde aufR 3.9wR 3.7% auf der Basis von 104 beobachteten Rettexen verfeinert. Cesstibtantit unterscheidet sich von normalen Pyrochloren insofern, als er signifikante Mengen von sehr großen Kationen, wie z.B. Cs enthält. Da these Kationen zu groß sind (VIII r 1.60 Å) für eine konventionelle [8]-koordinierteA Stelle, nehmen she die [18]-koordinierten Positionen ein, welche normalerweise monovalente Anionen enthalten. Natürliche Cesstibtantitproben sind nicht ideal insofern als sowohl Cs als auch monovalente Anionen in der Position vorkommen. Somit ist Cesstibtantit intermediär zu den normalen Pyrochloren (mit nur monovalenten Anionen auf der Position) and den inversen Pyrochloren (mit ausschließlichen großen Kationen an der Position).
  相似文献   

9.
Summary The hoop forces which develop in circular tubes buried in elastic-plastic ground are investigated. A closed form solution is used to determine the hoop forces which develop when the field stresses in the elastic-plastic ground are initially uniform. The finite element method is used to solve the problem for biaxial field stress. A parametric study is undertaken to assess the influence of tube stiffness and ground strength on the hoop forces, and use is made of elastic stress contours to predict the likely extent of material failure around tubes buried in ground with biaxial prestress.Notation a tube radius - c cohesion - D flexural stiffness of the structure - E i Young's modulus of structure - E s Young's modulus of ground - F hoop force (compression positive) - G s shear modulus of ground - H hoop stiffness of the structure - K coefficient of lateral pressure - N tan2(45+/2) - q ( 1 1)/2 - S f relative flexural stiffness of the structure - S h relative hoop stiffness of the structure - t structural thickness - v circumferential displacement - w radial displacement - v l Poisson's ratio of structure - v s Poisson's ratio of ground - normal traction acting on the structure - d deviatoric component of field stress - h horizontal field stress - m uniform component of field stress - v vertical field stress - 1 major principal stress - 3 minor principal stress - tangential traction acting on the structure - angle of internal friction of the ground - angle of dilation of the ground  相似文献   

10.
57Fe Mössbauer spectra are presented for synthetic cation-deficient Fe2TiO4 and FeCr2O4 spinel particles (<1μm) at various temperatures. The spectra of ferrimagnetic cation-deficient Fe2TiO4 show characteristic features due to relaxation because of superparamagnetism and spin relaxation in the temperature range 5–294 K. At 5 K and 78 K, a superposition of at least two sextets is observed which appear to arise from Fe3+ onA-sites (Fe A 3+ andB-sites (Fe B 3+ ) of the spinal lattice with magnetic hyperfine fields at 5 K ofB hf ((Fe B 3+ )≈47.5 T andB hf (Fe B 3+ )≈51.0 T, respectively. Cation-deficient FeCr2O4 particles reveal at 78 K a fieldB hf (Fe3+)≈46.9 T and exhibit relaxation spectra as a consequence of superparamagnetism in the temperature range 80 K - ~300 K. At 294 K, quadrupole splitting Δ(Fe A 3+ )=0.92 mm/s and isomer shift δ(Fe A 3+ )=0.29 mm/s (relative to metallic Fe) are measured. For both compounds the magnetic hyperfine fieldsB hf are discussed in terms of supertransferred hyperfine fields involving vacancies and in the case of cation-deficient Fe2TiO4 also diamagnetic Ti4+ neighbours of the Fe ions.  相似文献   

11.
12.
Synthetic aluminum-substituted maghemite samples, -(Al y Fe1-y )2O3 with y=0, 0.032, 0.058, 0.084, 0.106 and 0.151 have been studied by Mössbauer spectroscopy at 8 K and in the range 80 K to 475 K at steps of 25 K. The spectra have been analysed as a superposition of two sextets composed of asymmetrical Lorentzians. The A- and B-site isomer shifts were constrained as: A=B-0.12 mm/s. From the temperature dependence of B it was possible to determine the characteristic Mössbauer temperature and the intrinsic shift. Both quantities clearly increase with increasing Al content, at least up to 10 mole%. The temperature dependence of the A-and B-sites hyperfine fields could be satisfactorily reproduced using the molecular-field theory assuming an antiparallel spin configuration. The exchange integrals were found as: J AB =-25 K; J AA =-18 K and J BB = -3 K. The hyperfine fields show a crossing in the vicinity of 300 K as a result of the relatively strong A-A interaction. The Curie temperature for the non-substituted sample was calculated to be 930 K and decreases to 765 K for the sample with 15 mol% Al. The gradual decrease of the saturation value of the A-site hyperfine field with increasing Al substitution and the constancy of this quantity for the B sites, suggest that the Al cations occupy the B sites.Research Director, National Fund for Scientific Research, Belgium  相似文献   

13.
For ABO 4 type ternary oxides, high pressure phase transformations known up to the present are reviewed, and an attempt is made to explain and predict crystal structures of their high pressure phases. When ABO 4 type compounds are plotted based on the two variables, k=r A /r B and t=(r A +r B )/2r O, where r A , r B , and r O are the ionic radii of A and B cations and divalent oxygen, they can be classified into the major structure types. It is found empirically that a compound basically transforms to the structure type isostructural with a compound lying in a classified area with the same k and larger t values in the diagram.  相似文献   

14.
Distribution of landslides in southwest New Zealand   总被引:3,自引:0,他引:3  
This study examines the size distribution of a regional medium-scale inventory of 778 landslides in the mountainous southwest of New Zealand. The spatial density of mapped landslides per unit area can be expressed as a negative power–law function of Landslide area AL spanning three orders of magnitude (10–2–101 km2). Although observed in other studies on landslide inventories, this relationship is surprising, given the lack of absolute ages, and thus uncertainty about the temporal observation window encompassed by the data. Large slope failures (arbitrarily defined here as having a total affected area AL>1 km2) constitute 83% of the total affected landslide area ALT. This dominance by area affects slope morphology, where large-scale landsliding reduces slope angles below the regional modal value of hillslopes, mod39°. More numerous smaller and shallower failures tend to be superimposed on the pre-existing relief. Empirical scaling relationships show that large landslides involve >106 m3 of material. The volumes VL of individual preserved and presumably prehistoric (i.e. pre-1840) landslide deposits equate to 100–102 years of total sediment production from shallow landsliding in the respective catchments, and up to 103 years of contemporary regional sediment yield from the mountain ranges. Their presence in an erosional landscape indicates the geomorphic importance of landslides as temporary local sediment storage.  相似文献   

15.
A technique for IR spectroscopic determination of the total nitrogen content N S in the form of A-and B 1-defects is suggested. It provides for the computer processing and decomposition of IR spectra into constituent bands, calculation of the total absorption band area S N and individual areas S A and S B1 and their normalization with respect to the total area of the diamond intrinsic absorption S 0, with the normalization coefficients K S , K A , and K B1 being calculated. Based on the analysis of the IR spectra of 60 octahedral diamond crystals from the Mir and Yubileinaya pipes (Sakha-Yakutiya), the empirical functions N S = 911.85 K S 0.9919 ppm (R 2 = 0.9859), N A = 1185.6 K A 1.1511 ppm (R 2 = 0.8703), and N B1 = 911.85 K S 0.9919 ? 1185.6 K A 1.1511 ppm have been defined.  相似文献   

16.
Phase transitions in MgGeO3 and ZnGeO3 were examined up to 26 GPa and 2,073 K to determine ilmenite–perovskite transition boundaries. In both systems, the perovskite phases were converted to lithium niobate structure on release of pressure. The ilmenite–perovskite boundaries have negative slopes and are expressed as P(GPa)=38.4–0.0082T(K) and P(GPa)=27.4−0.0032T(K), respectively, for MgGeO3 and ZnGeO3. Enthalpies of SrGeO3 polymorphs were measured by high-temperature calorimetry. The enthalpies of SrGeO3 pseudowollasonite–walstromite and walstromite–perovskite transitions at 298 K were determined to be 6.0±8.6 and 48.9±5.8 kJ/mol, respectively. The calculated transition boundaries of SrGeO3, using the measured enthalpy data, were consistent with the boundaries determined by previous high-pressure experiments. Enthalpy of formation (ΔH f°) of SrGeO3 perovskite from the constituent oxides at 298 K was determined to be −73.6±5.6 kJ/mol by calorimetric measurements. Thermodynamic analysis of the ilmenite–perovskite transition boundaries in MgGeO3 and ZnGeO3 and the boundary of formation of SrSiO3 perovskite provided transition enthalpies that were used to estimate enthalpies of formation of the perovskites. The ΔH f° of MgGeO3, ZnGeO3 and SrSiO3 perovskites from constituent oxides were 10.2±4.5, 33.8±7.2 and −3.0±2.2 kJ/mol, respectively. The present data on enthalpies of formation of the above high-pressure perovskites were combined with published data for A2+B4+O3 perovskites stable at both atmospheric and high pressures to explore the relationship between ΔH f° and ionic radii of eightfold coordinated A2+ (R A) and sixfold coordinated B4+ (R B) cations. The results show that enthalpy of formation of A2+B4+O3 perovskite increases with decreasing R A and R B. The relationship between the enthalpy of formation and tolerance factor ( R o: O2− radius) is not straightforward; however, a linear relationship was found between the enthalpy of formation and the sum of squares of deviations of A2+ and B4+ radii from ideal sizes in the perovskite structure. A diagram showing enthalpy of formation of perovskite as a function of A2+ and B4+ radii indicates a systematic change with equienthalpy curves. These relationships of ΔH f° with R A and R B can be used to estimate enthalpies of formation of perovskites, which have not yet been synthesized.  相似文献   

17.
Vulnerability of buildings to debris flow impact   总被引:5,自引:1,他引:4  
Quantitative risk assessments (QRAs) for landslide hazards are increasingly being executed to determine an unmitigated level of risk and compare it with risk tolerance criteria set by the local or federal jurisdiction. This approach allows urban planning with a scientific underpinning and provides the tools for emergency preparedness. Debris-flow QRAs require estimates of the hazard probability, spatial and temporal probability of impact (hazard assessment) and vulnerability of the elements at risk. The vulnerability term is perhaps the most difficult to estimate confidently because (a) human death in debris flows is most commonly associated with building damage or collapse and is thus an indirect consequence and (b) the type and scale of building damage is very difficult to predict. To determine building damage, an intensity index (I DF) was created as the product of maximum expected flow depth d and the square of the maximum flow velocity v (I DF = dv 2). The I DF surrogates impact force and thus correlates with building damage. Four classes of building damage were considered ranging from nuisance flood/sedimentation damage to complete destruction. Sixty-six well-documented case studies in which damage, flow depth and flow velocity were recorded or could be estimated were selected through a search of the global literature, and I DF was plotted on a log scale against the associated damage. As expected, the individual damage classes overlap but are distinctly different in their respective distributions and group centroids. To apply this vulnerability model, flow velocity and flow depth need to be estimated for a given building location and I DF calculated. Using the existing database, a damage probability (P DF) can then be computed. P DF can be applied directly to estimate the likely insurance loss or associated loss of life. The model presented here should be updated with more case studies and is therefore made openly available to international researchers who can access it at .  相似文献   

18.
By using the method of characteristics, the effect of footing–soil interface friction angle (δ) on the bearing capacity factor Nγ was computed for a strip footing. The analysis was performed by employing a curved trapped wedge under the footing base; this wedge joins the footing base at a distance Bt from the footing edge. For a given footing width (B), the value of Bt increases continuously with a decrease in δ. For δ=0, no trapped wedge exists below the footing base, that is, Bt/B=0.5. On the contrary, with δ=?, the point of emergence of the trapped wedge approaches toward the footing edge with an increase in ?. The magnitude of Nγ increases substantially with an increase in δ/?. The maximum depth of the plastic zone becomes higher for greater values of δ/?. The results from the present analysis were found to compare well with those reported in the literature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of a smooth rigid stratum, located beneath a dense sand layer, on the bearing capacity and settlement of surface and shallow strip footings is investigated using an advanced experimental model. A theoretical analysis is presented for the bearing capacity of surface footings. The results indicate that the bearing capacity reaches a minimum value at a specific sand-layer thickness. Any increase in the layer thickness above this value causes an increase in the bearing capacity up to that corresponding to a continuous media.Notation H= thickness of the sand layer - B= foundation width - N q and N = bearing capacity factors for a semi-infinite layer - N qs and N s= bearing capacity factors for a finite layer - H o /B= limiting depth - D r= relative density - = angle of soil internal friction - M= model width - D= depth of surcharge - q= bearing stress, pressure applied on the footing - q u= bearing capacity - = unit weight of sand  相似文献   

20.
Absorption bands are determined in polarized optical spectra of vivianite Fe3(PO4)2·8H2O, recorded at room and low temperatures. These bands are caused by spin-allowed d-d transitions in structurally nonequivalent Fe A 2+ (~11000 cm-1 (γ-polarization) (and) ~12000 cm-1 (β-polarization)) (and) Fe B 2+ (~8400 cm-1 (γ, α-polarization) and ~11200 cm-1 (α-polarization)) ions. A charge transfer band (CTB) Fe B 2+ +Fe B 3+ →Fe B 2+ +Fe B 2+ (~15000 cm-1) also determined, has polarizing features giving evidence of a change in the Fe B 2+ -Fe B 3+ bond direction, when compared with Fe B 2+ -Fe B 2+ . Bands of exchange-coupled Fe3+-Fe3+ pairs (~19400, ~20400, ~21300 and ~21700 cm-1) which appear on oxidation of Fe2+ in paired Fe B octahedra are also characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号