首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The compression behavior of natural adamite [Zn2AsO4OH] has been investigated up to 11.07 GPa at room temperature utilizing in situ angle-dispersive X-ray diffraction and a diamond anvil cell. No phase transition has been observed within the pressure range investigated. A third-order Birch–Murnaghan equation of state fitted to all of the data points yielded V 0 = 430.1(4) Å3, K 0 = 80(3) GPa, K′ 0 = 1.9(5). The K 0 was obtained as 69(1) GPa when K′ 0 was fixed at 4. Analysis of axial compressible moduli shows the intense compression anisotropy of adamite: K a0 = 37(3) GPa, K b0 = 153(6) GPa, K c0 = 168(8) GPa; hence, a axis is the most compressible and the compressibility of b and c axis is comparable. Furthermore, the comparisons among the compressional properties of adamite, libethenite (Cu2PO4OH, also belongs to olivenite group), and andalusite (Al2SiO4O has the similar structure with adamite) at high pressure were made.  相似文献   

2.
The thermo-elastic behavior of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH)] has been investigated up to 1,200 K (at 0.0001 GPa) and 10 GPa (at 298 K) by means of in situ synchrotron powder diffraction. No phase transition has been observed within the temperature and pressure range investigated. PV data fitted with a third-order Birch–Murnaghan equation of state (BM-EoS) give V 0 = 458.8(1)Å3, K T0 = 111(3) GPa, and K′ = 7.6(7). The confidence ellipse from the variance–covariance matrix of K T0 and K′ from the least-square procedure is strongly elongated with negative slope. The evolution of the “Eulerian finite strain” vs “normalized stress” yields Fe(0) = 114(1) GPa as intercept values, and the slope of the regression line gives K′ = 7.0(4). The evolution of the lattice parameters with pressure is slightly anisotropic. The elastic parameters calculated with a linearized BM-EoS are: a 0 = 8.8877(7) Å, K T0(a) = 117(2) GPa, and K′(a) = 3.7(4) for the a-axis; b 0 = 5.6271(7) Å, K T0(b) = 126(3) GPa, and K′(b) = 12(1) for the b-axis; and c 0 = 10.1527(7) Å, K T0(c) = 90(1) GPa, and K’(c) = 8.1(4) for the c-axis [K T0(a):K T0(b):K T0(c) = 1.30:1.40:1]. The β angle decreases with pressure, βP(°) = βP0 −0.0286(9)P +0.00134(9)P 2 (P in GPa). The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α0 + α1 T −1/2. The refined parameters for epidote are: α0 = 5.1(2) × 10−5 K−1 and α1 = −5.1(6) × 10−4 K1/2 for the unit-cell volume, α0(a) = 1.21(7) × 10−5 K−1 and α1(a) = −1.2(2) × 10−4 K1/2 for the a-axis, α0(b) = 1.88(7) × 10−5 K−1 and α1(b) = −1.7(2) × 10−4 K1/2 for the b-axis, and α0(c) = 2.14(9) × 10−5 K−1 and α1(c) = −2.0(2) × 10−4 K1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α0(a): α0(b): α0(c) = 1 : 1.55 : 1.77. The β angle increases continuously with T, with βT(°) = βT0 + 2.5(1) × 10−4 T + 1.3(7) × 10−8 T 2. A comparison between the thermo-elastic parameters of epidote and clinozoisite is carried out.  相似文献   

3.
The structural evolution at high pressure of a natural 2M 1-phengite [(K0.98Na0.02)Σ=1.00(Al1.55Mg0.24Fe0.21Ti0.02)Σ=2.01(Si3.38Al0.62)O10(OH)2; a = 5.228(2), b = 9.057(3), c = 19.971(6)Å, β = 95.76(2)°; space group: C2/c] from the metamorphic complex of Cima Pal (Sesia Zone, Western Alps, Italy) was studied by single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions up to ~11 GPa. A series of 12 structure refinements were performed at selected pressures within the P range investigated. The compressional behaviour of the same phengite sample was previously studied up to ~25 GPa by synchrotron X-ray powder diffraction, showing an irreversible transformation with a drastic decrease of the crystallinity at P > 15–17 GPa. The elastic behaviour between 0.0001 and 17 GPa was modelled by a third-order Birch–Murnaghan Equation of State (BM-EoS), yielding to K T0 = 57.3(10) GPa and K′ = ?K T0/?P = 6.97(24). The single-crystal structure refinements showed that the significant elastic anisotropy of the 2M 1-phengite (with β(a):β(b):β(c) = 1:1.17:4.60) is mainly controlled by the anisotropic compression of the K-polyhedra. The evolution of the volume of the inter-layer K-polyhedron as a function of P shows a negative slope, Fitting the PV(K-polyhedron) data with a truncated second-order BM-EoS we obtain a bulk modulus value of K T0(K-polyhedron) = 26(1) GPa. Tetrahedra and octahedra are significantly stiffer than the K-polyhedron. Tetrahedra behave as quasi-rigid units within the P range investigated. In contrast, a monotonic decrease is observed for the octahedron volume, with K T0 = 120(10) GPa derived by a BM-EoS. The anisotropic response to pressure of the K-polyhedron affects the P-induced deformation mechanism on the tetrahedral sheet, consisting in a cooperative rotation of the tetrahedra and producing a significant ditrigonalization of the six-membered rings. The volume of the K-polyhedron and the value of the ditrigonal rotation parameter (α) show a high negative correlation (about 93%), though a slight discontinuity is observed at P >8 GPa. α increases linearly with P up to 7–8 GPa (with ?α/?P ≈ 0.7°/GPa), whereas at higher Ps a “saturation plateau” is visible. A comparison between the main deformation mechanisms as a function of pressure observed in 2M 1- and 3T-phengite is discussed.  相似文献   

4.
We report here high-pressure investigations on Piplia Kalan eucrite—a member of HED(Howardite-Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction(up to 16 GPa)and ~(57)Fe Mossbauer spectroscopy(up to 8 GPa).Dominant with anorthite-rich plagioclase,pigeonite-rich pyroxene and clino-ferrosilite,the sample displayed various phase transitions attaining amorphous character at 16 GPa.These phase transitions of individual components could be explained simultaneously through variations in high-pressure XRD patterns and the Mossbauer parameters.Most prominent P2_1/c to C2/c transition of pigeonite and ferrosilite was exhibited both as sudden variation in Mossbauer parameters and population inversion of Fe~(2+) in Ml and M2 sites between 2.9 and 3.8 GPa and variation in intensity profile in XRD patterns at 3.56 GPa.Anorthite seemed to respond more to such impact than other components in the sample.Complete amorphization in anorthite which occurred at lower pressure of- 12 GPa implied residual stress experienced due to shock impact.The presence of high pressure(monoclinic) phase of pigeonite and ferrosilite at ambient condition in this eucrite sample confirmed earlier suggestions of an early shock event.This report is an attempt to emphasize the role of anorthite in the determination of the residual stress due to impact process in the parent body thus to understand the behavioral differences amongst HED members.  相似文献   

5.
6.
The thermo-elastic behaviour of Be2BO3(OH)0.96F0.04 (i.e. natural hambergite, Z = 8, a = 9.7564(1), b = 12.1980(2), c = 4.4300(1) Å, V = 527.21(1) Å3, space group Pbca) has been investigated up to 7 GPa (at 298 K) and up to 1,100 K (at 0.0001 GPa) by means of in situ single-crystal X-ray diffraction and synchrotron powder diffraction, respectively. No phase transition or anomalous elastic behaviour has been observed within the pressure range investigated. P?V data fitted to a third-order Birch–Murnaghan equation of state give: V 0 = 528.89(4) Å3, K T0 = 67.0(4) GPa and K′ = 5.4(1). The evolution of the lattice parameters with pressure is significantly anisotropic, being: K T0(a):K T0(b):K T0(c) = 1:1.13:3.67. The high-temperature experiment shows evidence of structure breakdown at T > 973 K, with a significant increase in the full-width-at-half-maximum of all the Bragg peaks and an anomalous increase in the background of the diffraction pattern. The diffraction pattern was indexable up to 1,098 K. No new crystalline phase was observed up to 1,270 K. The diffraction data collected at room-T after the high-temperature experiment showed that the crystallinity was irreversibly compromised. The evolution of axial and volume thermal expansion coefficient, α, with T was described by the polynomial function: α(T) = α 0 + α 1 T ?1/2. The refined parameters for Be2BO3(OH)0.96F0.04 are: α 0 = 7.1(1) × 10?5 K?1 and α 1 = ?8.9(2) × 10?4 K ?1/2 for the unit-cell volume, α 0(a) = 1.52(9) × 10?5 K?1 and α 1(a) = ?1.4(2) × 10?4 K ?1/2 for the a-axis, α 0(b) = 4.4(1) × 10?5 K?1 and α 1(b) = ?5.9(3) × 10?4 K ?1/2 for the b-axis, α 0(c) = 1.07(8) × 10?5 K?1 and α 1(c) = ?1.5(2) × 10?4 K ?1/2 for the c-axis. The thermo-elastic anisotropy can be described, at a first approximation, by α 0(a):α 0(b):α 0(c) = 1.42:4.11:1. The main deformation mechanisms in response to the applied temperature, based on Rietveld structure refinement, are discussed.  相似文献   

7.
We have prepared aqueous MgSO4 solutions doped with various divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. In a companion paper (Fortes et al., in Phys Chem Min 39) we reported the identification of various phases using X-ray powder diffraction, including meridianiite-structured undecahydrates, melanterite- and epsomite-structured heptahydrates, novel enneahydrates and a new octahydrate. In this work we report the changes in unit-cell parameters of these crystalline products where they exist over sufficient dopant concentrations. We find that there is a linear relationship between the rate of change in unit-cell volume as a function of dopant concentration and the ionic radius of the dopant cation; large ions such as Mn2+ produce a substantial inflation of the hydrates’ unit-cell volume, whereas smaller ions such as Ni2+ produce a modest reduction in unit-cell volume. Indeed, when the data for all hydrates are normalised (i.e., divided by the number of formula units per unit-cell, Z, and the hydration number, n), we find a quantitatively similar relationship for different values of n. Conversely, there is no relationship between the degree of unit-cell inflation or deflation and the limit to which a given cation will substitute into a certain hydrate structure; for example, Co2+ and Zn2+ affect the unit-cell volume of MgSO4·11H2O to a very similar degree, yet the solubility limits inferred in our companion paper are >60 mol. % Co2+ and <30 mol. % Zn2+.  相似文献   

8.
 The partitioning of Fe and Mg between the M1 and M2 octahedral sites of olivine has been investigated by in situ time-of-flight neutron powder diffraction. The degree of M-cation order was determined from direct measurements of site occupancies in a synthetic sample of Fo50Fa50 heated to 1250 °C at the Fe-FeO oxygen buffer. Fe shows slight preference for M1 at temperatures below about 600 °C, progressively disordering on heating to this temperature. Above 630 °C, the temperature at which site preferences cross over (T cr), Fe preferentially occupies M2, becoming progressively more ordered into M2 on increasing temperature. The cation-ordering behaviour is discussed in relation to the temperature dependence of the M1 and M2 site geometries, and it is suggested that vibrational entropy, crystal field effects and changes in bond characteristics play a part in the cross-over of partitioning behaviour. The temperature dependence of site ordering is modelled using a Landau expansion of the free energy of ordering of the type ΔG = −hQ + gTQ +  (T − T c)Q 2 +  Q 4, with a/h = 0.00406 K−1, b/h = 2.3, T c = 572 K and g/h = 0.00106 K−1. These results suggest that the high-temperature ordering behaviour across the forsterite-fayalite join will have a bearing on the activity-composition relations of this important rock-forming mineral, and indicate that Fe-Mg olivine solid solutions become less ideal as temperature increases. Received: 12 August 1999 / Accepted: 25 April 2000  相似文献   

9.
Despite a large number of studies of iron spin state in silicate perovskite at high pressure and high temperature, there is still disagreement regarding the type and PT conditions of the transition, and whether Fe2+ or Fe3+ or both iron cations are involved. Recently, our group published results of a Mössbauer spectroscopy study of the iron behaviour in (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 110 GPa (McCammon et al. 2008), where we suggested stabilization of the intermediate spin state for 8- to 12-fold coordinated ferrous iron ([8–12]Fe2+) in silicate perovskite above 30 GPa. In order to explore the behaviour in related systems, we performed a comparative Mössbauer spectroscopic study of silicate perovskite (Fe0.12Mg0.88SiO3) and majorite (with two compositions—Fe0.18Mg0.82SiO3 and Fe0.11Mg0.88SiO3) at pressures up to 81 GPa in the temperature range 296–800 K, which was mainly motivated by the fact that the oxygen environment of ferrous iron in majorite is quite similar to that in silicate perovskite. The [8–12]Fe2+ component, dominating the Mössbauer spectra of majorites, shows high quadrupole splitting (QS) values, about 3.6 mm s?1, in the entire studied PT region (pressures to 58 GPa and 296–800 K). Decrease of the QS of this component with temperature at constant pressure can be described by the Huggins model with the energy splitting between low-energy e g levels of [8–12]Fe2+ equal to 1,500 (50) cm?1 for Fe0.18Mg0.82SiO3 and to 1,680 (70) cm?1 for Fe0.11Mg0.88SiO3. In contrast, for the silicate perovskite dominating Mössbauer component associated with [8–12]Fe2+ suggests the gradual change of the electronic properties. Namely, an additional spectral component with central shift close to that for high-spin [8–12]Fe2+ and QS about 3.7 mm s?1 appeared at ~35 (2) GPa, and the amount of the component increases with both pressure and temperature. The temperature dependence of QS of the component cannot be described in the framework of the Huggins model. Observed differences in the high-pressure high-temperature behaviour of [8–12]Fe2+ in the silicate perovskite and majorite phases provide additional arguments in favour of the gradual high-spin—intermediate-spin crossover in lower mantle perovskite, previously reported by McCammon et al. (2008) and Lin et al. (2008).  相似文献   

10.
11.
The cell dimensions and crystal structures of the fluoroperovskite NaMgF3 (neighborite), synthesized by solid state methods, have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 300–3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data show that Pbnm NaMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. The cell dimensions and atomic coordinates together with polyhedron volumes and distortion indices are given for Pbnm NaMgF3 at 25 K intervals from 300 to 3.6 K. Decreases in the a and c cell dimensions reach a saturation point at 50 K, whereas the b dimension becomes saturated at 150 K. The distortion of the structure of Pbnm NaMgF3 from the aristotype cubic structure is described in terms of the tilting of the MgF6 octahedra according to the tilt scheme a a c + . With decreasing temperature the antiphase tilt (a ) increases from 14.24° to 15.39°, whereas the in-phase tilt (c + ) remains effectively constant at ∼10.7°. Changes in the tilt angles are insufficient to cause changes in the coordination sphere of Na that might induce a low temperature phase transition. The structure of Pbnm NaMgF3 is also described in terms of normal mode analysis and displacements of the condensed normal modes are compared with those of Pbnm KCaF3.  相似文献   

12.
13.
《地学前缘(英文版)》2020,11(6):2339-2346
A new cerite group mineral species, taipingite-(Ce), ideally (Ce73+, Ca2)Σ9Mg(SiO4)3[SiO3(OH)]4F3, has been found in the Taipingzhen rare earth element (REE) deposit in the North Qinling Orogen (NQO), Central China. It forms subhedral grains (up to approximately 100 ​μm ​× ​200 ​μm) commonly intergrown with the REE mineral assemblages and is closely associated with allanite-(Ce), gatelite-(Ce), törnebohmite-(Ce), fluocerite-(Ce), fluocerite-(La), fluorite, bastnäsite-(Ce), parisite-(Ce) and calcite. Taipingite-(Ce) is light red to pinkish brown under a binocular microscope and pale brown to colorless in thin section, and it is translucent to transparent with a grayish-white streak and vitreous luster. This mineral is brittle with conchoidal fracture; has a Mohs hardness value of approximately 5½ and exhibits no cleavage twinning or parting. The calculated density is 4.900(5) g/cm3. Optically, taipingite-(Ce) is uniaxial (+), with ω ​= ​1.808(5), ε ​= ​1.812(7), c ​= ​ε, and a ​= ​b ​= ​ω. Furthermore, this mineral is insoluble in HCl, HNO3 and H2SO4. Electron microprobe analysis demonstrated that the sample was relatively pure, yielding the empirical formula (with calculated H2O): (Ce4.02La1.64Nd1.49Pr0.41Sm0.10Gd0.02Ho0.02Tm0.01Lu0.02Y0.03Ca0.66Mg0.05Th0.01–0.51)Σ9(Mg0.75Fe0.253+)Σ1(SiO4)3{[SiO3(OH)]3.98[PO3(OH)]0.02}Σ4(F1.81OH1.17Cl0.02)Σ3. Taipingite-(Ce) is trigonal and exhibits space group symmetry R3c with unit cell parameters a ​= ​10.7246(3) Å, c ​= ​37.9528(14) Å, V ​= ​3780.39(20) Å3 and Z ​= ​6. The strongest eight lines in the X-ray diffraction pattern are [d in Å(I)(hkl)]: 4.518(50)(202), 3.455(95)(122), 3.297(85)(214), 3.098(35)(300), 2.941(100)(02,10), 2.683(65)(220), 1.945(40)(238) and 1.754(40)(30,18). The crystal structure has been refined to a R1 factor of 0.025, calculated for the 2312 unique observed reflections (Fo ​≥ ​4σ). The mineral is named after its discovery locality and is characterized as the F-dominant analogue of cerite-(Ce).  相似文献   

14.
Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4–H2O system. Lower hydrates in the MgSO4–H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20–30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an ‘intermediate’ phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.  相似文献   

15.
Using a conventional high-T furnace, the solid solutions between magnesiochromite and manganochromite, (Mg1−x Mn x )Cr2O4 with x = 0.00, 0.19, 0.44, 0.61, 0.77 and 1.00, were synthesized at 1,473 K for 48 h in open air. The ambient powder X-ray diffraction data suggest that the Vx relationship of the spinels does not show significant deviation from the Vegard’s law. In situ high-T powder X-ray diffraction measurements were taken up to 1,273 K at ambient pressure. For the investigated temperature range, the unit-cell parameters of the spinels increase smoothly with temperature increment, indicating no sign of cation redistribution between the tetrahedral and octahedral sites. The VT data were fitted with a polynomial expression for the volumetric thermal expansion coefficient (aT = a0 + a1 T + a2 T - 2 \alpha_{T} = a_{0} + a_{1} T + a_{2} T^{ - 2} ), which yielded insignificant a 2 values. The effect of the composition on a 0 is adequately described by the equation a 0 = [17.7(8) − 2.4(1) × x] 10−6 K−1, whereas that on a 1 by the equation a 1 = [8.6(9) + 2.1(11) × x] 10−9 K−2.  相似文献   

16.
The natural norbergite, Mg2.98Fe0.01Ti0.02Si0.99O4(OH0.31F1.69) is examined by synchrotron X-ray diffraction analysis at pressures up to 8.2 GPa. The measured linear compressibilities of the crystallographic axes are β a  = 2.18(4) × 10−3, β b  = 2.93(7) × 10−3, and β c  = 2.77(7) × 10−3 (GPa−1), respectively and the calculated isothermal bulk modulus of the norbergite is K T = 113(2) GPa based on the Birch–Murnaghan equation of state assuming a pressure derivative of K′ = 4. The crystal structures of norbergite are refined at room temperature and pressures of 4.7, 6.3, and 8.2 GPa, yielding R values for the structure refinements of 4.6, 5.3, and 5.3%, respectively. The bulk moduli of the polyhedral sites are 293(15) GPa for the tetrahedron, 106(5) GPa for the M2 octahedron, 113(2) GPa for the M3 octahedron, and 113(3) GPa for the total void space. The bulk modulus exhibits a good linear correlation with the filling factor for polyhedral sites in structures of the humite minerals and forsterite, reflecting the Si4+ + 4O2− ⇔ □ + 4(OH, F) substitution in the humite minerals. Moreover, two simply linear trends were observed in the relationship between bulk modulus and packing index for natural minerals and dense hydrous magnesium silicate minerals. This relationship would reflect that the differences in compression mechanism were involved with hydrogen bonding in these minerals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Biachellaite, a new mineral species of the cancrinite group, has been found in a volcanic ejecta in the Biachella Valley, Sacrofano Caldera, Latium region, Italy, as colorless isometric hexagonal bipyramidal-pinacoidal crystals up to 1 cm in size overgrowing the walls of cavities in a rock sample composed of sanidine, diopside, andradite, leucite and hauyne. The mineral is brittle, with perfect cleavage parallel to {10$ \bar 1 $ \bar 1 0} and imperfect cleavage or parting (?) parallel to {0001}. The Mohs hardness is 5. Dmeas = 2.51(1) g/cm3 (by equilibration with heavy liquids). The densities calculated from single-crystal X-ray data and from X-ray powder data are 2.515 g/cm3 and 2.520 g/cm3, respectively. The IR spectrum demonstrates the presence of SO42−, H2O, and absence of CO32−. Biachellaite is uniaxial, positive, ω = 1.512(1), ɛ = 1.514(1). The weight loss on ignition (vacuum, 800°C, 1 h) is 1.6(1)%. The chemical composition determined by electron microprobe is as follows, wt %: 10.06 Na2O, 5.85 K2O, 12.13 CaO, 26.17 Al2O3, 31.46 SiO2, 12.71 SO3, 0.45 Cl, 1.6 H2O (by TG data), −0.10 −O=Cl2, total is 100.33. The empirical formula (Z = 15) is (Na3.76Ca2.50K1.44)Σ7.70(Si6.06Al5.94O24)(SO4)1.84Cl0.15(OH)0.43 · 0.81H2O. The simplified formula is as follows: (Na,Ca,K)8(Si6Al6O24)(SO4)2(OH)0.5 · H2O. Biachellaite is trigonal, space group P3, a =12.913(1), c = 79.605(5) ?; V = 11495(1) ?3. The crystal structure of biachellaite is characterized by the 30-layer stacking sequence (ABCABCACACBACBACBCACBACBACBABC). The tetrahedral framework contains three types of channels composed of cages of four varieties: cancrinite, sodalite, bystrite (losod) and liottite. The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) (hkl)] are as follows: 11.07 (19) (100, 101), 6.45 (18) (110, 111), 3.720 (100) (2.1.10, 300, 301, 2.0.16, 302), 3.576 (18) (1.0.21, 2.0.17, 306), 3.300 (47) (1.0.23, 2.1.15), 3.220 (16) (2.1.16, 222). The type material of biachellaite has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 3642/1.  相似文献   

18.
We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = ? 4.143(1) × 10?7 T 3 + 0.00047(2) T2 ? 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.  相似文献   

19.
A new pyroxene with formula (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, synthesized in a high-pressure toroidal ‘anvil-with-hole’ apparatus at P = 7 GPa and T = 1700 °C, was characterized by X-ray single-crystal diffraction and Raman spectroscopy. The compound was found to be monoclinic (R1 = 2.56 %), space group C2/c, with lattice parameters a = 9.687(2), b = 8.814(1), c = 5.290(1) Å, β = 107.853(2)°, V = 430.08(1) Å3. The coexistence of Mg and Ti4+ at the M1 site does not induce strong modifications either to the M1 site or to the adjacent M2 site. The Raman spectrum of synthetic Na–Ti-pyroxene was obtained for the first time and compared with that of Mg2Si2O6 (with very low concentrations of Na and Ti). The structural characterization of the Na–Ti–Mg-pyroxene is important, because the study of its thermodynamic constants provides new constraints on thermobarometry of the upper mantle assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号