首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline specimens in the CaTiO3–CaSiO3 perovskite system have been hot-pressed in a 2000-ton uniaxial split-sphere apparatus (USSA-2000) at pressures up to 15 GPa and temperature of 1550°C, for the compositions CaTiO3, Ca(Ti0.75Si0.25)O3, Ca(Ti0.5Si0.5)O3. For the specimens with the bulk densities within 1% of the X-ray density, compressional and shear wave velocity measurements have been conducted using ultrasonic interferometry. The measured adiabatic bulk moduli (K s ) for the CaTiO3 and Ca(Ti0.5Si0.5)O3 perovskites are 175(1) and 188(1) GPa and shear moduli (G) of 106(1) and 109(1) GPa. In situ X-ray diffraction studies at high pressure and temperature resulted in isothermal values for K 0 of 170(5) and 185(5) GPa, respectively. For the unquenchable CaSiO3 perovskite, elasticity theory and systematics were used to predict K 0=212(7) GPa and G 0=112(5) GPa; this shear modulus is 37% less than that for (Mg,Fe)SiO3 perovskite, suggesting that CaSiO3 perovskite cannot be ignored in modeling the composition of the Earth’s lower mantle. Received: 27 June 1997 / Revised, accepted: 25 November 1997  相似文献   

2.
Orthorhombic post-perovskite CaPtO3 is isostructural with post-perovskite MgSiO3, a deep-Earth phase stable only above 100 GPa. Energy-dispersive X-ray diffraction data (to 9.4 GPa and 1,024 K) for CaPtO3 have been combined with published isothermal and isobaric measurements to determine its PVT equation of state (EoS). A third-order Birch–Murnaghan EoS was used, with the volumetric thermal expansion coefficient (at atmospheric pressure) represented by α(T) = α0 + α1(T). The fitted parameters had values: isothermal incompressibility, $ K_{{T_{0} }} $  = 168.4(3) GPa; $ K_{{T_{0} }}^{\prime } $  = 4.48(3) (both at 298 K); $ \partial K_{{T_{0} }} /\partial T $  = ?0.032(3) GPa K?1; α0 = 2.32(2) × 10?5 K?1; α1 = 5.7(4) × 10?9 K?2. The volumetric isothermal Anderson–Grüneisen parameter, δ T , is 7.6(7) at 298 K. $ \partial K_{{T_{0} }} /\partial T $ for CaPtO3 is similar to that recently reported for CaIrO3, differing significantly from values found at high pressure for MgSiO3 post-perovskite (?0.0085(11) to ?0.024 GPa K?1). We also report axial PVT EoS of similar form, the first for any post-perovskite. Fitted to the cubes of the axes, these gave $ \partial K_{{aT_{0} }} /\partial T $  = ?0.038(4) GPa K?1; $ \partial K_{{bT_{0} }} /\partial T $  = ?0.021(2) GPa K?1; $ \partial K_{{cT_{0} }} /\partial T $  = ?0.026(5) GPa K?1, with δ T  = 8.9(9), 7.4(7) and 4.6(9) for a, b and c, respectively. Although $ K_{{T_{0} }} $ is lowest for the b-axis, its incompressibility is the least temperature dependent.  相似文献   

3.
We define and calibrate a new model of molar volume as a function of pressure, temperature, ordering state, and composition for spinels in the supersystem (Mg, Fe2+)(Al, Cr, Fe3+)2O4 ? (Mg, Fe2+)2TiO4. We use 832 X-ray and neutron diffraction measurements performed on spinels at ambient and in situ high-P, T conditions to calibrate end-member equations of state and an excess volume model for this system. The effect on molar volume of cation ordering over the octahedral and tetrahedral sites is captured with linear dependence on Mg2+, Al3+, and Fe3+ site occupancy terms. We allow standard-state volumes and coefficients of thermal expansion of the end members to vary within their uncertainties during extraction of the mixing properties, in order to achieve the best fit. Published equations of state of the various spinel end members are analyzed to obtain optimal values of the bulk modulus and its pressure derivative, for each explicit end member. For any spinel composition in the supersystem, the model molar volume is obtained by adding excess volume and cation order-dependent terms to a linear combination of the five end-member volumes, estimated at pressure and temperature using the high-T Vinet equation of state. The preferred model has a total of 9 excess volume and order-dependent parameters and fits nearly all experiments to within 0.02 J/bar/mol, or better than 0.5 % in volume. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure.  相似文献   

4.
5.
Experiments using laser-heated diamond anvil cells combined with synchrotron X-ray diffraction and SEM–EDS chemical analyses have confirmed the existence of a complete solid solution in the MgSiO3–MnSiO3 perovskite system at high pressure and high temperature. The (Mg, Mn)SiO3 perovskite produced is orthorhombic, and a linear relationship between the unit cell parameters of this perovskite and the proportion of MnSiO3 components incorporated seems to obey Vegard’s rule at about 50 GPa. The orthorhombic distortion, judged from the axial ratios of a/b and \( \sqrt{2}\,a/c, \) monotonically decreases from MgSiO3 to MnSiO3 perovskite at about 50 GPa. The orthorhombic distortion in (Mg0.5, Mn0.5)SiO3 perovskite is almost unchanged with increasing pressure from 30 to 50 GPa. On the other hand, that distortion in (Mg0.9, Mn0.1)SiO3 perovskite increases with pressure. (Mg, Mn)SiO3 perovskite incorporating less than 10 mol% of MnSiO3 component is quenchable. A value of the bulk modulus of 256(2) GPa with a fixed first pressure derivative of four is obtained for (Mg0.9, Mn0.1)SiO3. MnSiO3 is the first chemical component confirmed to form a complete solid solution with MgSiO3 perovskite at the PT conditions present in the lower mantle.  相似文献   

6.
The large variation in precipitation rate and abundance of mineralscomprising the CaCO3–MgCO3 binary join can be understood in terms of their large differences in activation energy. Following the treatment of Lippmann (1973), activation energy isextrapolated along the join as a linear function of mole percentmagnesium. For the dolomite-type carbonates, the predicted activationenergy is compatible with recent measurements of calcian protodolomitekinetics; cation ordering in ideal dolomite can thus be seen as anadditional contribution to activation energy. Although no activationenergies are available for magnesian calcites, treatment of rate datafor these phases using the formalism of stoichiometric saturationsuggests a possible change in mechanism or rate-limiting step astemperature is decreased from 25 to 5 °C.  相似文献   

7.
Results are presented of multicolor observations of the blazar 3C 454.3 carried out at the Astronomical Institute of St. Petersburg State University and the Central Astronomical Observatory of the Russian Academy of Sciences in 2007–2010. The color variability of the blazar is analyzed. Several outbursts were observed. The existence of two variable synchrotron sources is inferred. The first is responsible for the small-amplitude flux variability, and the second for flares. In each flare, the relative spectral energy distribution (SED) of the variable source is found to be constant. All the SEDs are power laws, but with different spectral indexes in different flares. This indicates the impossibility of explaining the global variability only via a difference in Doppler boosting due to variations of the angle between the line of sight and the velocity of the electrons responsible for the synchrotron radiation. The polarimetric and photometric observations are used to derive the absolute SED of constant component. A comparison of the observed SEDs for different brightness levels with the SED of the constant componentmakes it possible to explain the observed color variability as due to the superposition of a bluer variable source with a constant SED and variable flux onto the constant component.  相似文献   

8.
To elaborate physicochemical models for the origin of crystalline rocks, experimental studies of the field of high-alumina assemblages of the system CaO–MgO–Al2O3–SiO2 were carried out at 10–30 kbar and 1250–1535 °C. We have determined the phase relations between the melt (L) and An, Sp, Cpx, Cor, and Ga, the slope of the rays of the monovariant reactions An + Sp = Cpx + Cor + (Ga) and L = Cpx +Ga + Cor + Sp, the position of the nonvariant point (An, Sp, Cpx, Cor, Ga, L), and the compositions of phases participating in these reactions. Based on a topological analysis of the studied segment of the system CaO–MgO–Al2O3–SiO2, we have substantiated that “eclogitization” must follow the reaction Opx + An + Sp = Cpx + Ga. A fundamental continuous series of eutectic monovariant equilibria was observed: L = Cpx + Opx + Fo + An, L = Cpx + Opx + An + Sp, L = Cpx (+ Ga) + An + Sp, and L = Cpx + Cor (+ Ga) + An. A change in the melt composition in this series of eutectic reactions depending on pressure must reflect the most likely magma genesis trend in nature. Comparision of the composition fields in which the above series of reactions is observed with the composition fields of the rocks of magmatic formations showed that this series is most similar to the alkali-earth series of rocks. The mineralogical compositions of cumulates and phenocrysts found in the effusive and dike varieties of these rocks correspond to unique sets of subsolidus phase associations and individual subsolidus phases crystallizing in this fundamental eutectic series.  相似文献   

9.
The phase state of fluid in the system H3BO3–NaF–SiO2–H2O was studied at 350–800 °C and 1–2 kbar by the method of synthetic fluid inclusions. The increase in the solubility of quartz and the high reciprocal solubility of H3BO3 and NaF in water fluid at high temperatures are due to the formation of complexes containing B, F, Si, and Na. At 800 °C and 2 kbar, both liquid and gas immiscible phases (viscous silicate-water-salt liquid and three water fluids with different contents of B and F) are dispersed within each other. The Raman spectra of aqueous solutions and viscous liquid show not only a peak of [B(OH)3]0 but also peaks of complexes [B(OH)4], polyborates [B4O5(OH)4]2–, [B3O3(OH)4], and [B5O6(OH)4], and/or fluoroborates [B3F6O3]3–, [BF2(OH)2], [BF3(OH)], and [BF4]. The high viscosity of nonfreezing fluid is due to the polymerization of complexes of polyborates and fluorine-substituted polyborates containing Si and Na. Solutions in fluid inclusions belong to P–Q type complicated by a metastable or stable immiscibility region. Metastable fluid equilibria transform into stable ones owing to the formation of new complexes at 800 ºC and 2 kbar as a result of the interaction of quartz with B-F-containing fluid. At high concentrations of F and B in natural fluids, complexes containing B, F, Si, and alkaline metals and silicate-water-salt dispersed phases might be produced and concentrate many elements, including ore-forming ones. Their transformation into vitreous masses or viscous liquids (gels, jellies) during cooling and the subsequent crystallization of these products at low temperatures (300–400 °C) should lead to the release of fluid enriched in the above elements.  相似文献   

10.
11.
Samples with eclogitic composition in the system CaO–FeO–Fe2O3–MgO–Al2O3–SiO2 were produced from various kinds of starting materials held in graphite-lined Pt capsules at a pressure of 2.5–3.0 GPa and temperatures of 800–1,300 °C using a piston-cylinder or Belt apparatus. Garnets and clinopyroxenes were characterized by analytical transmission electron microscopy and electron probe micro-analysis (EPMA). Fe3+/ΣFe ratios determined by electron energy-loss spectroscopy (EELS) decrease in clinopyroxene from 22.2 ± 3.4 % at 800 °C to 13.3 ± 5.4 % at 1,300 °C, while in garnet, they vary between 10.8 ± 1.5 and 15.4 ± 4.7 %, respectively. Temperature estimates according to Krogh (Contrib Mineral Petrol 99:44–48, 1988) reproduce the experimental temperature to ±60 °C without systematic deviations if total iron is used in the calculation. If only the Fe2+ content is used, which was obtained by combining EPMA and EELS results, the experimental temperature is underestimated by 33 °C on average at 800–1,200 °C and overestimated by 77 °C on average at 1,300 °C. These systematic deviations can be explained by the temperature-dependent ratio of Fe2+/ΣFe in garnet divided by that in clinopyroxene. Since the difference between the calculated and experimental temperature is relatively small, a Fe2+-based recalibration of the thermometer appears not to be necessary for the investigated system in the range of pressure, temperature and composition covered by the experiments of this study.  相似文献   

12.
We present an analysis of multicolor (U BV RI JH K) observations of the blazar 3C 454.3 made in 2004–2006. We used the light curves compiled at the Turin Observatory from coordinated observations in the framework of the WEBT program. We consider color variations in two time intervals, when an unprecedented strong outburst occurred (2004–2005), and when the object was in a post-eruptive state and a low-amplitude brightness increase was observed (2006). The spectral energy distribution (SED) of the variable component remained the same within each of these intervals, but differed between them. In both cases, this SED followed a power law after correction for extinction, suggesting the variable component has a synchrotron nature. We conclude that the variations in the optical and IR were due to the same variable source. The object’s unusual color behavior (the brighter, the redder) was due to an increasing contribution from a variable component that was redder than the constant component (big blue bump).  相似文献   

13.
Doklady Earth Sciences - A palladium and lead intermetallide, namely, zvyagintsevite, is a relatively widespread mineral of magmatic sulfide ores in Norilsk deposits and ores in the Bushveld,...  相似文献   

14.
15.
The configurational heat capacity, shear modulus and shear viscosity of a series of Na2O–Fe2O3–Al2O3–SiO2 melts have been determined as a function of composition. A change in composition dependence of each of the physical properties is observed as Na2O/(Na2O + Al2O3) is decreased, and the peralkaline melts become peraluminous and a new charge-balanced Al-structure appears in the melts. Of special interest are the frequency dependent (1 mHz–1 Hz) measurements of the shear modulus. These forced oscillation measurements determine the lifetimes of Si–O bonds and Na–O bonds in the melt. The lifetime of the Al–O bonds could not, however, be resolved from the mechanical spectrum. Therefore, it appears that the lifetime of Al–O bonds in these melts is similar to that of Si–O bonds with the Al–O relaxation peak being subsumed by the Si–O relaxation peak. The appearance of a new Al-structure in the peraluminous melts also cannot be resolved from the mechanical spectra, although a change in elastic shear modulus is determined as a function of composition. The structural shear-relaxation time of some of these melts is not that which is predicted by the Maxwell equation, but up to 1.5 orders of magnitude faster. Although the configurational heat capacity, density and shear modulus of the melts show a change in trend as a function of composition at the boundary between peralkaline and peraluminous, the deviation in relaxation time from the Maxwell equation occurs in the peralkaline regime. The measured relaxation times for both the very peralkaline melts and the peraluminous melts are identical with the calculated Maxwell relaxation time. As the Maxwell equation was created to describe the timescale of flow of a mono-structure material, a deviation from the prediction would indicate that the structure of the melt is too complex to be described by this simple flow equation. One possibility is that Al-rich channels form and then disappear with decreasing Si/Al, and that the flow is dominated by the lifetime of Si–O bonds in the Al-poor peralkaline melts, and by the lifetime of Al–O bonds in the relatively Si-poor peralkaline and peraluminous melts with a complex flow mechanism occurring in the mid-compositions. This anomalous deviation from the calculated relaxation time appears to be independent of the change in structure expected to occur at the peralkaline/peraluminous boundary due to the lack of charge-balancing cations for the Al-tetrahedra.  相似文献   

16.
A simplest equation within the framework of the Mie-Grüneisen–Einstein approach is considered. Pressure estimation values are presented that are derived by conventional arithmetic and algebraic calculations as a function of temperature and volume. The equation under consideration complies with the Mie-Grüneisen–Debye model at high temperature. Different versions of an equation of state (EoS) of MgO proposed by Speziale et al. (J Geophys Res 106B:515–528, 2001) as a pressure standard at high temperatures are subject to analyses. In the literature, at least four versions of Speziale et al. EoS of MgO are discussed; the discrepancy between them reaching a few GPa at T > 2,000 K and P > 100 GPa. Our analyses of these equations suggest that the volume dependence of the Debye temperature is accepted arbitrarily and does not agree with the definition of the Grüneisen parameter, γ = −(∂lnΘ/∂lnV) T . Pressure as a function of temperature and volume in the Mie-Grüneisen–Einstein approach or the Gao pressure calculator can be used to estimate true pressure at compression x = V/V 0 < 1 with the Speziale et al. EoS of MgO.  相似文献   

17.
Here we present the results of U–Pb LA–ICP–MS dating of detrital zircons from the Ediacaran–Early Cambrian deposits of the eastern part of the Baltic monoclise (Leningrad Region). The obtained age spectra of the detrital zircons suggest that, in the Ediacaran–Early Cambrian, the main clastic material source to the northwest of the Russian Platform was the Baltic Shield. Then in the Early Cambrian along with the Baltic Shield provenance, a clastic source from the Timanian margin of Baltica (northeast in modern coordinates) contributed to the deposits. The obtained data either somewhat set limits of the Timanian orogen formation as older than the previously suggested Middle Cambrian (about 510 Ma), based on the “absence of a Proto–Uralian–Timanian provenance signal” in the Sablino Formation rocks in the south Ladoga, or suggest another rearrangement of detritus transportation paths at the end of Stage 3 (Atdabanian).  相似文献   

18.
This research is focused on the analysis of the sequence stratigraphic units of F3 Block, within a wave-dominated delta of Plio–Pleistocene age. Three wells of F3 block and a 3D seismic data, are utilized in this research. The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section. Integration of seismic sequence stratigraphic interpretation, using well logs, and subsequent 3D geostatistical modeling, using seismic data, aided to evaluat...  相似文献   

19.
20.
Doklady Earth Sciences - New data on the minerals of the Fe–Ni–Co–Cu–S system in the differentiated intrusions of the Southern Urals are presented. Based on a detailed study...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号