首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stratigraphic record from a boring penetrating the 104 m thick Quaternary sequence on the island of Anholt is summarized. The spatial distribution of the pre-Quaternary formations and the surface topography of these are described on the basis of reflection seismic profiles. It is concluded that Anholt is located in the crestal zone of a southeast–northwest trending anticline in the pre-Quaternary. The anticline was formed during the Late Cretaceous–Early Tertiary inversion episodes and was later deeply truncated by erosion. A southeast–northwest trending erosional channel, c. 2 km wide and with a maximum depth c. 250 m below sea level, is located southeast of Anholt along the crest of the anticline. This channel is not present at the bore locality. Although no direct correlation from the boring to the seismic profiles could be achieved it is argued that a strong reflection near the base of the Quaternary outside the channel may be correlated with the Saalian–Eemian complex found in the boring. Three younger sequences of probable Early and Middle Weichselian, Late Glacial and Holocene age respectively have been recognized. The Late Glacial and Holocene sediments appear to have been deposited in erosional troughs and channels cut into a sequence of Lower and Middle Weichselian sediments. Post-Eemian till deposits or other evidence unambiguously indicating the presence of Weichselian glaciers have not been found, either in the boring or in the seismic profiles. It is therefore assumed that the erosion of the Lower-Middle Weichselian sequence was of fluvial origin and can be ascribed to the lowstand period of the Weichselian glacial period. The western part of Anholt can possibly be regarded as an erosional remnant of the Lower-Middle Weichselian sequence.  相似文献   

2.
The Quaternary deposits in the Store Middelgrund–Rørdebanke area midway between the island of Anholt and Hallandsåsen on the Swedish coast are described on the basis of reflection seismic profiles with a vertical resolution of 5–10 m. The Quaternary rests on Upper Cretaceous limestone, the surface of which is nearly horizontal. Three Quaternary sequences are defined and interpreted as: (1) Late Weichselian marine or lacustrine deposits, (2) Late Weichselian glaciogenic deposits, and (3) Late Saalian–Eemian and Early–Middle Weichselian deposits. Sequence 3 is probably comparable to the upwards-coarsening sequence known from Skaerumhede in Vendsyssel. The layers in sequence 3 are dislocated in the eastern part of the Store Middelgrund–Rødebanke area mainly by gentle folding, but other types of deformations occur. Folding could be the result of horizontal push from an ice sheet approaching from the east. Alternatively the folding is an effect of vertical, gravitational forces acting on the sediments due to an unstable density profile, as described by the Rayleigh–Taylor instability model. The zone of deformation is located close to the northern flank of the tectonically active Sorgenfrei–Tornquist Zone. It is suggested that the initiation of the folding process was facilitated by tremors from small earthquakes.  相似文献   

3.
Shallow seismic data and vibrocore information, sequence stratigraphic and faunal evidence have been used for documentation of Late Weichselian reactivation of faulting in the south central Kattegat, southern Scandinavia. The study area is situated on the Fennoscandian Border Zone, where tectonic activity has been recurrent since Early Palaeozoic time and still occurs, as shown by present earthquake activity. New data from the area south of the island of Anholt show that after deglaciation fast isostatic rebound resulted in reactivation of a NW-SE striking normal fault system. This tectonic episode is dated to a period starting shortly before 15.0 cal. ka BP and ending around 13.5 cal. ka BP, after regression had already reached a level of about 30 m b.s.l. The vertical displacement associated with the faulting was in the order of 20 m. More generally, the results support the previously reported late Weichselian sea-level highstand, which was followed by forced regression until the eustatic sea-level rise surpassed the rate of glacio-isostatic rebound in early Preboreal. Our findings further imply that drainage of the Baltic Ice Lake through the Øresund at c. 15 cal. ka BP (Bergsten & Nordberg 1992) may have been triggered by tectonic activity in this region.  相似文献   

4.
5.
Based on c. 1500 km reflection seismic profiles, the Quaternary formations and their pre-Quaternary substratum in the southeastern Kattegat are described and a geological interpretation is suggested. The major volume of Quaternary deposits is found in a broad north-northwest south-southeast trending topographic depression. The substratum consists of Upper Cretaceous limestone in the region north of the Sorgenfrei–Tornquist Zone, and inside this zone older Mesozoic sedimentary rocks and Precambrian crystalline rocks are found. The Quaternary is divided into four seismic units. No direct stratigraphic control is available, but the units are assumed to represent a period ranging from Late Saalian to Holocene. The oldest unit (unit 3) is composed of deposits of supposed Late Saalian to Middle Weichselian age. This unit was severely eroded probably by the Late Weichselian ice sheets in a zone extending 40–50 km from the Swedish coast. Unit 2 represents the Late Weichselian till deposits. North and east of the island of Anholt unit 3 is cut by a system of channels eroded by glacial meltwater. By the erosion a relief up to c. 100 m was formed. After the recession of the Late Weichselian ice, an up to 100 m thick sequence of water-lain sediments (unit 1) was deposited in the erosional basin and channels. Holocene deposits (unit 0) of considerable thickness have only been identified in the channels in the northern part of the area.  相似文献   

6.
The Quaternary of the Kattegat area, Scandinavia: a review   总被引:1,自引:0,他引:1  
The Quaternary sedimentary history and its relations to the pre-Quaternary in the Kattegat region are reviewed. The Quaternary in the area is restricted to relatively young sediments, including scattered findings of Saalian deposits and more continuous occurrences from the Eemian, the Weichselian and the Holocene. Glacial and interglacial palaeoenvironmental reconstructions, including Holocene changes in oceanographic circulation, are reviewed, and the recent sedimentary processes and the present hydrographic regime are outlined. Furthermore, Quaternary and present tectonic activity in connection with some of the pre-Quaternary fault zones is discussed.  相似文献   

7.
在安乡凹陷东南部两护村新施工揭穿第四系的ZKC1孔,孔内第四系为河流和湖泊沉积,地层组成自下而上依次为上新世—早更新世华田组、早更新世汨罗组、中更新世早期—中期洞庭湖组、晚更新世坡头组以及全新统等。对钻孔岩心进行了系统的主量元素及磁化率分析,进而从陆相沉积物化学风化指数(CWI)与温度和湿度正相关、磁化率与温度和湿度负相关的理论出发,探讨洞庭盆地第四纪气候演变。结合其他资料,CWI曲线特征指示洞庭盆地第四纪气候演变过程:早更新世为冷干→暖湿→冷干→暖湿,中更新世为冷干→暖湿→冷干—温湿→暖湿,晚更新世为寒冷→温湿→寒冷,全新世总体为温湿-暖湿。这一结论与ZKC1孔孢粉组合特征反映的气候演变过程及中国东部第四纪气候演化基本吻合,说明沉积物CWI对第四纪气候演变具有较好的响应。变化曲线及相关系数(-0.32)表明磁化率值与CWI值呈较明显的负相关,暗示温度和湿度对磁化率具有明显的控制作用。但可能受盆地升降等因素的影响叠加,磁化率曲线未能如CWI一样明确反映出第四纪气候的阶段性变化。  相似文献   

8.
Calcium carbonate granules up to 2.5 mm in size are commonly found in Quaternary soils and sediments but have only rarely been used for any form of interpretation. Growing interest in recent years has focused on the concentration patterns in stratigraphy containing buried land surfaces, and the possibility of dating the granules. Making sense of either of these approaches requires a basic understanding of granule types, together with their modes of accumulation and destruction in stratigraphy. Details of the formation, morphology, deposition and post‐depositional changes are discussed along with the necessary ecological and pedological information on earthworm behaviour and effects, then summarised into a framework for interpretations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A sedimentological study of Quaternary sediments from the northwestern part of the Barents Sea shows that their composition is controlled by the underlying Mesozoic bedrock and that very little sediment has been supplied from outside sources. The Quaternary sediments consist of Pleistocene glacial clays (moraines) and Holocene gravel, sand and mud, derived by erosion of the clay-rich moraines, which again have been derived from underlying Mesozoic rocks. On the shallow Spitsbergen Bank (30-100 m depth) we find a high energy facies of bioclastic carbonate sand and gravel and lag deposits of Mesozoic rock fragments from the underlying moraine. 14C-datings of the bioclastic carbonates (Molluscs and Barnacles) suggest that soft bottom conditions with Mya truncata prevailed in early Holocene time, succeeded by a hard bottom high energy environment with Barnacles in the last 2000-3000 years. This may be due to a southward movement of the oceanic polar front into the Spitsbergen Bank due to colder climate in Late Holocene (subatlantic) time, which at present day produces strong bottom currents down to 100 m depth. On the Spitsbergen Bank carbonate sedimentation has succeeded glacial sedimentation as a result of withdrawal of clastic sediment supply in Holocene time and high organic productivity because of upwelling. A similar mechanism may have been operating during earlier glaciations, i.e. in Late Precambrian time to produce an association of glacial and carbonate sediments although the biological precipitation was different at that time. In Late Precambrian time precipitation or carbonate by algaes may have occurred in colder water on the shelves due to higher saturation of carbonate in the sea water.  相似文献   

10.
The distribution and genesis of n-alkanes in sediments from the 38-m sequence obtained during core boring in the Ivashkina lagoon were studied. Sediments were formed in the Holocene as a result of thermokarst and penetration of seawater. The sequence mostly includes permafrost rocks partially molten in the upper horizons and covered by Quaternary deposits, which are mostly the products of thermoabrasion.  相似文献   

11.
12.
We provide here information on the distribution of copper, zinc, lead, gold, silver, barium, arsenic, antimony, mercury, selenium and tellurium in the Moore and Monte Negro high-sulfidation epithermal deposits in the Pueblo Viejo district, Dominican Republic. Moore and Monte Negro are funnel-shaped zones of advanced argillic alteration and precious-metal mineralization which extend to depths of about 350 m below the present surface. The uppermost part of the Moore deposit has been removed by erosion, whereas the Monte Negro deposit is covered by rocks containing low, but still anomalous gold grades. At Moore, concentrations of all elements except copper increase upward through the deposit. At Monte Negro, all elements except barium and zinc show a similar upward increase in concentration to a point near the top of the deposit from which they decrease upward. This difference reflects the fact that the top of the Moore deposit has been removed by erosion. Because the deposits are funnel-shaped and average metal concentrations increase by almost an order of magnitude upward, most of the metals are concentrated in the upper parts of the deposits. The upward increase in concentration of most metals is gradual and similar in magnitude to the prograde temperature dependence in solubilities of many metal complexes, suggesting that the metals were deposited by cooling. By contrast, concentrations of mercury and, to a lesser extent, tellurium increase more abruptly in the upper part of the deposits. This change probably reflects boiling of the hydrothermal solutions and partitioning of mercury and tellurium into a rising vapor phase, and it suggests that host rocks overlying the deposits will be anomalous in mercury and tellurium. Comparison to the Broadlands, New Zealand, hydrothermal system supports these inferred depositional processes. It shows that the behavior of arsenic and antimony at Broadlands was different from that at Pueblo Viejo, possibly because the elements were complexed differently in the two ore fluids. Comparison of trace-element abundances at Pueblo Viejo to other high-sulfidation epithermal systems shows differences in base-metal, arsenic and mercury abundances which may be related to the depths at which the deposits formed. The results of this study highlight the application and need for quantitative trace-element data from epithermal deposits.  相似文献   

13.
Laterite occurs extensively over the crystalline and sedimentary rocks in the midland and lowland areas of south Kerala, India. Two lateritization cycles are identified in this area. Large, good-quality kaolin deposits, composed mostly of kaolinite, are characteristic of the sedimentary sequence in south Kerala. These deposits were formed on deposition of the weathering materials of the khondalites towards the first cycle of lateritization. After deposition and uplift of the sedimentary rocks, another lateritization cycle affected these, as well as the khondalites during pre-Quaternary times with the formation of a planation surface at 25–125 m above sea level having thick laterite profiles. The laterite profiles over the kaolin deposits show higher concentration of Fe-oxides (mostly in the form of hematite) and titania, compared to their concentration in the kaolins. Higher contents of Cr and Ni are also characteristic of the laterite over kaolin deposits. Recrystallization of the kaolinite, appearance of Al, Fe and Si amorphous phases in the kaolin clays and partial removal of Fe and Ti from them are attributed to the second lateritization cycle.  相似文献   

14.
Of the two post-Tertiary alluvial fills found throughout the southern part of the Central Plateau of Mexico, the older (whose deposition came to an end about 5000 B. C.) was laid down by shortlived floods. The younger (which dates from A. D. 500–1700) reflects equable stream regimes. The fluctuations in the seasonal distribution of rainfall indicated by the fills are analogous to regional trends observed in the area during the period of record.
Zusammenfassung Im südlichen Teil des Zentralplateaus von Mexico wurden zwei post-tertiäre Alluvialfüllungen festgestellt, von denen die ältere (deren Ablagerung ungefähr vor 7000 Jahren beendet war) durch kurzzeitige Überflutungen entstand, während die jüngere (die auf die Zeit von 500–1700 unserer Zeitrechnung zurückgeht) gleichförmige Zustände widerspiegelt. Die erforderlichen Schwankungen in der jahreszeitlichen Verteilung der Regenfälle entsprechen den regionalen Tendenzen, die während der Zeit der Aufzeichnungen in dem Gebiet beobachtet wurden.

Résumé Deux phases post-tertiaires de comblement alluvial ont eu lieu dans le sud du Plateau Central méxicain. La plus ancienne s'acheva vers 5000 ans a. C. et témoigne de l'action de crues spasmodiques; la plus jeune, qui date de 500–1700, est le reflet des régimes fluviatiles réguliers. Elles indiquent des oscillations dans la répartition saisonière des pluies qui trouvent leurs parallèles dans des tendances régionales plus récentes.

; , 7000 , , , 500–1700 , . , , .
  相似文献   

15.
From analysis of the densest network of echogrammes yet available for the Kieler Bucht, Western Baltic, the submarine erosional terraces have been mapped. In general these correlate well with the features mapped and described by Kolp (1976) for the adjacent Mecklenburger Bucht. The lower terraces are at - 30 m and may reach 2100 m in broadness. Compared to present day conditions, the rates of cliff retreat at the time of formation were evidently much accelerated, due possibly to harsher climatic conditions including a greater intensity of winter lake ice, frosts, wind and rain. Other terraces at - 27, - 24, - 19, and - 14 m were identified, and these are related to syngressions in the various eustatic curves applicable to the Western baltic. A hypsometric curve for the submarine terrain of the Kieler Bucht, when compared to the relative sea level curve shows that 65% of the bay was transgressed in only 700 years. Maximum sedimentation rates in the Kieler Bucht should have occurred at this time, and independent data from dated cores from Vejsnäs Rinne support this prediction.  相似文献   

16.
The Deccan Trap region exhibits an erosional landscape over a relatively ancient and stable Deccan shield. The Quaternary history of the area has been reconstructed on the basis of evidence from alluvial deposits occurring along the major rivers. However, recent investigations have revealed that evidence for geo-environmental change during the Quaternary Period is also contained in the colluvial deposits that occur in the foothill zones. The colluvial deposits, ranging in thickness from 1 to 10 m, invariably occupy gently inclined pediment slopes. The sediments are presently deeply dissected by gullies, and the process of colluviation has almost ceased. These deposits are best preserved in the semi-arid parts of the region. Detailed textural, geochemical and stratigraphical studies at four different sites reveal similar input processes, the slight variations being attributed to local environmental factors. Scanning electron microscopy studies of some grains indicate marginal contribution of aeolian processes at the time of deposition. Mesolithic artefacts and a few U/Th dates indicate that the colluviation took place during the Late Quaternary. The properties of the deposits suggest relatively high energy conditions as well as a remarkable variability in the intensity of hillslope processes. These properties are indicative of semi-arid conditions during which the regolith was stripped from devegetated hillslopes and was deposited on the pediments. A variety of evidence indicates that the period of colluviation coincided with arid conditions during the Last Glacial Maximum. The geomorphological and archaeological evidence also indicates that incision by gully systems was initiated during the early Holocene humid phase. The environmental conditions deduced for the study area are similar to those reported for other parts of the intertropical zone. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
We revised geological data substantiating the unified 1983 Regional Stratigraphic Chart of Gorny Altai Quaternary deposits. Based on our own and literature data, we showed that Lower and Middle Quaternary glacial horizons are erroneously distinguished in the Yaloman-Katun’ zone of southeastern Altai. A new correlation is proposed, according to which the glacial complex of the maximum glaciation (MIS-6) corresponds to the Inya catafluvial series and the glacial complex of the first postmaximum glaciation (MIS-4 unit), to the Sal’dzhar catafluvial series. The lectostratotypes of both series are described. The event history of the second half of the Late Neopleistocene in Gorny Altai (MIS-3 and MIS-2) was less catastrophic for ancient biota and Paleolithic man than it was believed earlier.  相似文献   

18.
19.
Aeolian deposits are widely distributed in the interior of the Tibetan Plateau, and their chronology is poorly known. It is not yet clear whether they accumulated only after the last deglaciation, or over a longer time. We applied quartz OSL dating to aeolian samples from the Lhasa area with OSL ages ranging from 2.9 ± 0.2 to at least 118 ± 11 ka. The probability density frequency (PDF) distribution of 24 ages reveals age clusters at about 3, 8, 16–21, 33, and 79–83 ka, indicating enhanced sediment accumulation then. The results show that aeolian deposition occurred throughout most of the last 100 ka. This implies that: 1) an ice sheet covering the whole Tibetan Plateau during the last glacial maximum (LGM) could not have existed; and 2) erosion during the last deglaciation was not as strong as previously proposed, such that not all pre-Holocene loess was removed. The age distribution shown in the PDF indicates that aeolian accumulation is episodic. Sand-formation events revealed by age clusters at 3, 8, and 16–21 ka imply roughly synchronous environmental responses to corresponding global-scale arid events.  相似文献   

20.
Despite increased application of subsurface datasets below the limits of seismic resolution, reconstructing near‐surface deformation of shallow key stratigraphic markers beneath modern alluvial and coastal plains through sediment core analysis has received little attention. Highly resolved stratigraphy of Upper Pleistocene to Holocene (Marine Isotope Stage 5e to Marine Isotope Stage 1) alluvial, deltaic and coastal depositional systems across the southern Po Plain, down to 150 m depth, provides an unambiguous documentation on the deformation of previously flat‐lying strata that goes back in time beyond the limits of morphological, historical and palaeoseismic records. Five prominent key horizons, accurately selected on the basis of their sedimentological characteristics and typified for their fossil content, were used as highly effective stratigraphic markers (M1 to M5) that can be tracked for tens of kilometres across the basin. A facies‐controlled approach tied to a robust chronology (102 radiocarbon dates) reveals considerable deformation of laterally extensive nearshore (M1), continental (M2 and M3) and lagoon (M4 and M5) marker beds originally deposited in a horizontal position (M1, M4 and M5). The areas where antiformal geometries are best observed are remarkably coincident with the axes of buried ramp anticlines, across which new seismic images reveal substantially warped stratal geometries of Lower Pleistocene strata. The striking spatial coincidence of fold crests with the epicentres of historic and instrumental seismicity suggests that deformation of marker beds M1 to M5 might reflect, in part at least, syntectonically generated relief and, thus, active tectonism. Precise identification and lateral tracing of chronologically constrained stratigraphic markers in the 14C time window through combined sedimentological and palaeoecological data may delineate late Quaternary subsurface stratigraphic architecture at an unprecedented level of detail, outlining cryptic stratal geometries at the sub‐seismic scale. This approach is highly reproducible in tectonically active Quaternary depositional systems and can help to assess patterns of active deformation in the subsurface of modern alluvial and coastal plains worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号