首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Early Paleozoic evolution of the northern margin of Gondwana is characterized by several episodes of bimodal magmatism intruded or outpoured within thick sedimentary basins. These processes are well recorded in the Variscan blocks incorporated in the Ligurian Alps because they experienced low temperature Alpine metamorphism. During the Paleozoic, these blocks, together with the other Alpine basements, were placed between the Corsica-Sardinia and the Bohemian Massif along the northern margin of Gondwana. In this framework, they host several a variegated lithostratigraphy forming two main complexes(Complexs I and II) that can be distinguished by both the protoliths and their crosscutting relationships, which indicate that the acidic and mafic intrusives of Complex II cut an already folded sequence made of sediments, basalts and granitoids of Complex I. Both complexes were involved in the Variscan orogenic phases as highlighted by the pervasive eclogite-amphibolite facies schistosity(foliation II). However, rare relicts of a metamorphic foliation at amphibolite facies conditions(foliation I)is locally preserved only in the rocks of Complex I. It is debatable if this schistosity was produced during the early folding event e occurred between the emplacement of Complex I and II e rather than during an early stage of the Variscan metamorphic cycle.New SHRIMP and LA ICP-MS Ue Pb zircon dating integrated with literature data, provide emplacement ages of the several volcanic or intrusive bodies of both complexes. The igneous activity of Complex I is dated between 507 ± 15 Ma and 494 ± 5 Ma, while Complex II between 467 ± 12 Ma and 445.5 ± 12 Ma.The folding event recorded only by the Complex I should therefore have occurred between 494 ± 5 Ma and 467 ± 12 Ma. The Variscan eclogite-amphibolite facies metamorphism is instead constrained between ~420 Ma and ~300 Ma. These ages and the geochemical signature of these rocks allow constraining the Early Paleozoic tectono-magmatic evolution of the Ligurian blocks, from a middleeupper Cambrian rifting stage, through the formation of an Early Ordovician volcanic arc during the Rheic Ocean subduction, until a Late Ordovician extension related to the arc collapse and subsequent rifting of the PaleoThetys. Furthermore, the ~420-350 Ma ages from zircon rims testify to thermal perturbations that may be associated with the Silurian rifting-related magmatism, followed by the subduction-collisional phases of the Variscan orogeny.  相似文献   

2.
The paleogeography during Early Cretaceous of the northern margin of the Ligurian Tethys is poorly constrained because of deformation and erosion during Pyrenean and Alpine orogenic phases. The present-day limit between Lower Cretaceous sediments in the South–East basin, located at the northwestern margin of the Ligurian Tethys, and basement rocks is the consequence of a protracted erosion history. Lower Cretaceous sediments observed today in the basin, even close to the present-day outcropping border, are characteristic of pelagic environments. A larger extent of a Lower Cretaceous cover on the basement must then be considered. This study focuses on the western part of this margin (the Causses basin), in the South of the Massif Central (France), using several thermochronometers and geothermometers to decipher the former extent of the sedimentary cover. Apatite fission track thermochronology on basement rocks surrounding the Causses basin suggests that these rocks cooled from temperatures higher than 110°C during the mid-Cretaceous. Average fluid inclusion homogenisation temperatures between 94°C and 108°C are recorded in calcite veins from outcropping Toarcian and Aalenian shales. In the shales, Tmax values, temperature obtained by Rock–Eval pyrolysis of organic matter, are in agreement with these elevated temperatures. Different explanations for these relatively high temperatures, which cannot be explained by the present-day sedimentary serie in the basin, have been tested using a 1D thermal modelling procedure (Genex). For a 95±10-mW/m2 paleoflux, thick sedimentary deposits (2.5±0.3 km) including 1.3±0.3 km of Lower Cretaceous sediments cover the South of the Massif Central; these formations have been subsequently eroded from mid-Cretaceous time onwards. This study confirms that the South of the Massif Central was a site of marine sedimentation during the Early Cretaceous where a thick sedimentary sequence was once deposited.  相似文献   

3.
《Geodinamica Acta》2013,26(1-2):21-35
The Voltri Massif underwent a polyphasic tectono-metamorphic evolution that records both the Alpine and part of the Apennine deformation events. So this is a key-area to investigate the relationships between Alpine and Apennine deformation events.

This paper focus on the upper crustal deformations (UCD) that characterize the last stages of the tectonics of the Voltri Massif. In the Voltri Massif UCD are characterized by the superpositions of ductile, brittle-ductile and brittle structures that can be attributed to three main tectonic events (from D3 to D5). The oldest UCD event (D3) developed folds and reverse shear zones under ductile to brittle-ductile conditions. Main compressive NW-SE oriented regime characterized D3 event. Brittle-ductile to brittle reverse shear zones and important strike-slip/transpressive systems overprinted D3 structures. This D4 event was significant at the regional scale and occurred under main transpressive, NE-SW oriented, regime. The latest normal and transtensional brittle structures, that formed during UCD D5 event, locally reactivated the older structures.  相似文献   

4.
The importance of time-series analysis in cyclic stratigraphy is evaluated by comparing three different methods (adaptive multiple taper spectral analysis, auto-/cross-correlation analysis, cova functions) applied to stratigraphic time series from the Early Cretaceous Cismon section in northern Italy. Carbonate content and magnetic susceptibility vary in a quasi-cyclic fashion in this pelagic limestone section and are almost perfectly negatively correlated. The spectral technique requires a high degree of preprocessing of the original data (interpolation and resampling at a regular interval, filtering, inversion) which introduces smoothing and rounding errors. The statistical correlation analysis also requires evenly and (for cross-correlation) correspondingly spaced series. The geostatistical cova functions (a generalization of the cross-variogram) prove to be the most versatile and robust of the methods compared. Cova functions can be calculated from unevenly and noncor-respondingly spaced time series without any preprocessing. This method also retains relatively more of the signal if noise and extreme outliers obscure the picture. The periodicities detected in the Cismon time series fall in the range of Milankovitch cycles. Cycle periods of 45 cm and 80 cm likely correspond to dominant precession and obliquity cycles. Due to the inaccuracy of the Cretaceous time scale periods cannot be matched exactly yet, but cycle ratios are close to expected ratios so that there is great potential for future cyclostratigraphic work to contribute to a substantial improvement of the geologic time scale.  相似文献   

5.
In the Bavarian Alps (Germany), west of the Isar River, the abyssal deposits of the Lower Barremian to Upper Campanian Rhenodanubian Group consist of siliciclastic and calcareous turbidites alternating with hemipelagic non-calcareous mudstones. The up to 1500-m-thick succession, deposited in the Penninic Basin to the south of the European Plate, is characterized by a low mean sedimentation rate (c. 25 mm kyr−1) over 60 million years. Palaeocurrents and turbidite facies distribution patterns suggest that sedimentation occurred on a weakly inclined abyssal plain. The highest sedimentation rates (up to 240 mm kyr−1) were associated with the calcareous mud turbidites of the newly defined Röthenbach Subgroup, which includes the Piesenkopf, Kalkgraben and Hällritz formations (Middle Coniacian to Middle Campanian). These calcareous turbidites prograded from the west, and interfinger towards the east with red hemipelagic claystone. A high sea level presumably favoured pelagic carbonate production and accumulation on the shelves and on internal platforms in the western part of the basin, whereas siliciclastic shelves with steep slope angles have bordered the eastern part of the basin, where a dearth of turbidite sedimentation and increased Cretaceous oceanic red beds deposition occurred. In contrast to the eustatically-induced Middle Coniacian to Lower Campanian Cretaceous oceanic red beds (calcareous nannoplankton zones CC14 to CC18), red hemipelagites of Early Cenomanian age (upper part of calcareous nannoplankton zone CC9) and early Late Campanian age (upper part of zone CC21 and zone CC22) are interpreted as the result of regional tectonic activity.  相似文献   

6.
Remnants of the Liguria-Piemont Ocean with its Jurassic ophiolitic basement are preserved in the South Pennine thrust nappes of eastern Switzerland. Analysis of South Pennine stratigraphy and comparison with sequences from the adjacent continental margin units suggest that South Pennine nappes are relics of a transform fault system. This interpretation is based on three arguments: (1) In the highly dismembered ophiolite suite preserved, Middle to Late Jurassic pelagic sediments are found in stratigraphic contact not only with pillow basalts but also with serpentinites indicating the occurrence of serpentinite protrusions along fracture zones. (2) Ophiolite breccias (»ophicalcites«) occurring along distinct zones within peridotite-serpentinite host rocks are comparable with breccias from present-day oceanic fracture zones. They originated from a combination of tectonic and sedimentary processes: i.e. the fragmentation of oceanic basement on the seafloor and the filling of a network of neptunian dikes by pelagic sediment with locally superimposed hydrothermal activity and gravitational collapse. (3) The overlying Middle to Late Jurassic radiolarian chert contains repeated intercalations of massflow conglomerates mainly comprising components of oceanic basement but clasts of acidic basement rocks and oolitic limestone also exist. This indicates a close proximity between continental and oceanic basement. The rugged morphology manifested in the mass-flow deposits intercalated with the radiolarites is draped by pelagic sediments of Early Cretaceous age.  相似文献   

7.
《Tectonophysics》1987,142(1):87-98
Four nappes have been recognized in the Ligurian Apennines. In the Lavagna Nappe very low-grade metamorphism is combined with very large, originally W-facing isoclinal folds. In the other nappes, no evidence for metamorphism is found and all eutectonic folding was originally E- to NE-facing. Tectonic transport along the major nappe contacts was in an E- to NE-direction. A tectonic model is presented, which explains the generation of the large, originally W-facing folds as a result of originally E-inclined subduction within a young oceanic basin. Young oceanic lithosphere (maximum age approximately 25 Ma) subducted beneath oceanic lithosphere with a maximum age of approximately 40 Ma, under the influence of horizontally oriented compressional forces. Within the tectonic wedge, associated with the subduction, originally W-facing isoclinal folding and metamorphism occurred. Decrease and/or termination of compression resulted in the cessation of the subduction movements, followed by uplift of the region above the subducted plate by means of buoyancy. This uplift formed a slope from which sequences slid in an E- to NE-direction, causing E- to NE-facing folds. Ultimately, detachment and thrusting of gravitational nappes took place, by which process rock sequences of oceanic origin have been externally transported to attain ensialic (continental) domains. The Triassic-Early Oligocene tectonic events recognized in the Ligurian Apennines correlate quite well with the events that preceded the collision phase of the Alps.  相似文献   

8.
Gabbro and eclogite boudins are preserved within the amphibolites of the composite para- and ortho-gneiss Variscan basement of the Savona Crystalline Massif (Ligurian Briançonnais, Italy). Whole rock trace element patterns, low initial εNd (+5.4 to +8.8) data and trace element analyses on relict igneous clinopyroxene revealed that the mafic rocks were derived from depleted mantle melts, which most likely underwent crustal contamination during emplacement. Gabbros have a cumulus origin controlled by clinopyroxene and plagioclase segregation, whereas the eclogites represent evolved melts. U-Pb and trace element micro-analyses on zircons separated from one amphibolitised gabbro and one eclogite help to constrain coeval ages at ~468 Ma for their igneous protoliths. The occurrence of a few inherited zircons confirms the involvement of a crustal component in the petrogenesis of the mafic rocks. In the eclogite, concordant zircon ages younger than the protolith age testify to metamorphic re-crystallisation (or new growth) from about 420 to 305 Ma. Zircon textures and trace element compositions indicate that eclogite facies metamorphism occurred 392–376 Ma ago. The younger zircon portions yielding a mean Concordia age of 333 ± 7 Ma are related to equilibration or new growth during the post-eclogite, amphibolite-facies equilibration.  相似文献   

9.
The retrograde P-T trajectory of the eclogitic Fe-Ti-gabbros from the Ligurian Alps is constrained by the appearance of mineral parageneses post-dating the Na-clinopyroxene + garnet eclogitic assemblage and indicating the following sequence of metamorphic events: (1) amphibolitic stage— edenite/katophorite + plagioclase (An33–43) + oxides in symplectitic aggregates; (2) glaucophanic stage— a porphyroblastic glaucophanic amphibole has overgrown the symplectite, winchite also occurs as thin rims around glaucophane and both amphiboles are, sometimes, armoured by atoll garnets; (3) albite-amphibolite stage—barroisite/katophorite + albite + epidote + oxides ± chlorite overprint the glaucophanic stage minerals; (4) greenschist stage—represented by actinolite + albite + epidote + oxide paragenesis.
The metamorphic evolution is complex and the decompression path, on a P–T diagram, is significantly different from those defined in the literature for the Voltri eclogites. The main features inferred from the P–T path are the following: (1) the pressure climax does not match the thermal climax, the maximum temperature conditions are in fact achieved during the early stage of uplift; (2) a decrease in temperature, suggested by the appearance of glaucophane after the amphibolitic symplectite; (3) successive uplift, probably accompanied by an increase in temperature. The complexity of the P-T path drawn for the Voltri eclogites can be explained with a mechanism of successive underthrusts propagating from the innermost to the outermost sector of the Ligurian Alps.  相似文献   

10.
In the Ligurian Apennines and the Brianzonese area of the Maritime Alps (Northern Italy), and in the Lucanian Apennines and Calabria (Southern Italy), pumpellyite formed during the Alpine metamorphism is widespread in terranes of Late Paleozoic to Miocene age, particularly in mafic ophiolites (Tethyan ophiolites of Jurassic-Early Cretaceous age).Pumpellyite developed under variable metamorphic conditions, which include zeolite, prehnite-pumpellyite, pumpellyite-actinolite, lawsonite-albite and blueschist facies. Pumpellyite from rocks belonging to all these facies was studied in 30 specimens of different chemistry, derived mostly from ophiolitic basalt and gabbro, but also from gneiss, amphibolite, and greywacke protoliths.Microprobe data give evidence of strong compositional variations of pumpellyite. The ranges are extreme for Al and Fetot (Al2O3=18.74–30.91; FeOtot=0.46–12.71), to a lesser extent for Mg (MgO=0.58–4.00), with a reciprocal variation of Al and Fetot which suggests that most Fe is Fe3+.Pumpellyite compositions can be related with the metamorphic conditions, particularly an increase of the Al/Fetot ratio with increasing pressure, but larger compositional variation for each facies in the Al-Fetot-Mg diagram than those previously described was recognized. Particularly the compositions of pumpellyite from the pumpellyite-actinolite and blueschist fades assemblages extend towards higher Fetot contents. Moreover, pumpellyites of the lawsonite-albite facies rocks result to be more aluminous than in blueschist facies; such relations appear to be inconsistent with that expected by the effects of pressure on the Al content.As the rocks are generally incompletely re-equilibrated, their bulk chemistry is not an important factor of pumpellyite composition; in fact the correlations of Al, Fetot and Mg are low. The local environment of crystallization, more evidently the composition of the precursor minerals, seems to be a major controlling factor. The observed topologic relations indicate that either the nature of the precursor mineral, or the presence of relict phases have a great influence on the pumpellyite composition. The observed variations within individual specimens, as well as the interspecimen ones, can be explained by small-scale inhomogeneities and in some cases by differences in the activity of O2.It can be therefore concluded that the composition of pumpellyite often reflects disequilibrium crystallization and cannot be generally used as an indicator of metamorphic conditions.  相似文献   

11.
Integrated petrological and structural investigations of eclogites from the eclogite zone of the Voltri Massif (Ligurian Alps) have been used to reconstruct a complete Alpine P–T deformation path from burial by subduction to subsequent exhumation. The early metamorphic evolution of the eclogites has been unravelled by correlating garnet zonation trends with the chemical variations in inclusions found in the different garnet domains. Garnet in massive eclogites displays typical growth zoning, whereas garnet in foliated eclogites shows rim‐ward resorption, likely related to re‐equilibration during retrogressive evolution. Garnet inclusions are distinctly different from core to rim, consisting primarily of Ca‐, Na/Ca‐amphibole, epidote, paragonite and talc in garnet cores and of clinopyroxene ± talc in the outer garnet domains. Quantitative thermobarometry on the inclusion assemblages in the garnet cores defines an initial greenschist‐to‐amphibolite facies metamorphic stage (M1 stage) at c. 450–500 °C and 5–8 kbar. Coexistence of omphacite + talc + katophorite inclusion assemblage in the outer garnet domains indicate c. 550 °C and 20 kbar, conditions which were considered as minimum P–T estimates for the M2 eclogitic stage. The early phase of retrograde reactions is polyphase and equilibrated under epidote–blueschist facies (M3 stage), characterized by the development of composite reaction textures (garnet necklaces and fluid‐assisted Na‐amphibole‐bearing symplectites) produced at the expense of the primary M2 garnet‐clinopyroxene assemblage. The blueschist retrogression is contemporaneous with the development of a penetrative deformation (D3) that resulted in a non‐coaxial fabric, with dominant top‐to‐the‐N sense of shear during rock exhumation. All of that is overprinted by a texturally late amphibolite/greenschist facies assemblages (M4 & M5 stages), which are not associated with a penetrative structural fabric. The combined P–T deformation data are consistent with an overall counter‐clockwise path, from the greenschist/amphibolite, through the eclogite, the blueschist to the greenschist facies. These new results provide insights into the dynamic evolution of the Tertiary oceanic subduction processes leading to the building up of the Alpine orogen and the mechanisms involved in the exhumation of its high‐pressure roots.  相似文献   

12.
Diverse thoracican cirripedes from the Hauterivian of the Hannover district of northern Germany are described, including seven species, belonging to five genera. Of these, a new genus belonging to the Scalpellidae, Jaegerscalpellum, includes one Hauterivian species, J. elegans sp. nov., an Aptian species, J. comptum (Withers, 1910) and an Albian species, J. politum (Darwin, 1851) are also referred to it. A new Cretiscalpellum, C. mutterlosei sp. nov. is described from the Hauterivian, and C. matrioni sp. nov. is described from the Middle Albian of France. The oldest record of the Unilatera Gale, 2018, Pedupycnolepas pulcher sp. nov. is described from the Hauterivian; this displays typical shell structure of the group, retained by living Verrucidae. Finally, four species of Zeugmatolepadidae, subfamily Martillepadinae, are recorded from the Hauterivian, including Martillepas hausmanni (Koch and Dunker, 1836), M. decoratus sp. nov., M. auriculum sp. nov. and Etcheslaepas borealis (Collins, 1990). The Hauterivian fauna from Hannover shows affinities both with Late Jurassic and later Cretaceous (Aptian-Cenomanian) forms, and includes the earliest scalpellids, unilateran (Pedupycnolepas) and Cretiscalpellum species known. It constrains the age of the Cretaceous cirripede evolutionary radiation to the earliest Cretaceous.  相似文献   

13.
The Jurassic succession of Rocca Busambra consists of two lithostratigraphic units: a pile of peritidal limestones several hundreds of metres thick (Inici Formation: Hettangian to Sinemurian) and a 2 to 15 m thick sequence of Rosso Ammonitico‐type pelagic limestones (Toarcian? to lowermost Berriasian). An extensive interval of non‐deposition is evidenced by a thick Fe–Mn oxide crust on the bounding disconformity and is recorded partially in the material contained within a complex network of neptunian dykes and sills. Seven lithofacies are distinguished in the Rosso Ammonitico. These lithofacies show that the Rosso Ammonitico limestones differ from most analogues both in Sicily and elsewhere: sediments are mostly grain‐supported and non‐nodular; obviously bottom currents were important during deposition of these sediments. These currents were pulsating at different frequencies and induced winnowing, intraclast production and early cement precipitation. Other Rosso Ammonitico lithosomes of Late Jurassic to earliest Cretaceous age, usually decimetre thick and discontinuous, overlie the Inici Formation without any Fe–Mn crust; their anomalous stratigraphical and geometrical relationships show that they were deposited on an inclined, stepped, erosional surface incised in the sub‐horizontal Inici Formation. This ancient escarpment is interpreted as the result of a mainly gravitational collapse of the margin of a pelagic plateau. Such mass wasting was probably due to the backstepping of the tectonic plateau–basin margin that is not observable directly, but may be inferred from circumstantial evidence. This observation clearly shows that tectonic activity affected the Rocca Busambra sector of the West Tethys continental margins a few tens of millions of years after the end of the rifting stage. The anomalous Rosso Ammonitico sediments are the only indication of the escarpment and their occurrence in the stratigraphic record is probably more widespread than reported in the literature. More accurate palaeoenvironmental and palaeogeographic reconstructions may depend on the identification of these sediments.  相似文献   

14.
New structural and stratigraphic data for a selected area of the Ligurian Alps are combined in order to assess and discuss the role played by extensional structures in the southernmost segment of the Western Alps during thrusting. Restored cross-sections and field data suggest that the structural style in the external sector of the chain may depend upon the presence of pre-orogenic normal faults ascribed to three extensional events linked to different geodynamic contexts: (i) Permian post-Variscan plate reorganisation, (ii) Mesozoic rifting–drifting phases leading to the opening of the Alpine Tethys, and (iii) Eocenic development of the European foreland basins. During positive inversion in Eocene times, a thin-skinned thrust system developed in this area, followed by a thick-skinned phase. In both situations the inherited extensional structures played fundamental roles: during the thin-skinned phase they conditioned the thrusting sequence, also producing large-scale buckle folds and partial reactivations; during the thick-skinned phase the strain was compartmentalized and partitioned by pre-existing faults.The kinematic model of the external sectors of the Ligurian chain also allows the re-assessment of the Alpine evolution of the front-foreland transition, including: (i) indirect confirmation that in the Eocene the Ligurian Briançonnais and Dauphinois domains were not separated by the Valais-Pyrenean oceanic basin; (ii) that the thin-skinned phase progressively changed into thick-skinned; (iii) the assertion that there were no significant deformations from the Oligocene to the present-day, and the Corsica–Sardinia block rotation only produced a change in orientation of previously formed structures and normal fault system development.  相似文献   

15.
The rhodolith-bearing biostromes described in this paper form part of an episode of exclusively carbonate sedimentation, restricted in time (Aquitanian) but relatively extensive in space, within a molasse sedimentation basin. The biostromes correspond to an algal biocoenosis on a bar or structural high, are of cyclic character, and make up a minor sequence within the Miocene molasse megasequence.

The foramol skeletal assemblage, paleogeographic conditions of the area, and resemblance of the deposits to other documented mid-latitude limestones suggest that the biostromes are examples of non-tropical carbonate sedimentation.

Trace element contents (Mg, Sr, Mn, Fe) show two distinct diagenetic phases. The first was due to active circulation of oxygenated solutions in a phreatic marine environment, the second to poor circulation of reducing solutions in a fresh-water phreatic environment.  相似文献   


16.
《Sedimentary Geology》2001,139(3-4):261-283
We have estimated abundance and distribution of automicrite, marine cements and skeletal grains in the Triassic Sella massif, an isolated platform flanked by steep (25–35°) clinoforms. 108 samples were taken at constant intervals from measured sections of the major zones of the platform edifice: the platform top, margin–upper slope, and lower slope. In a first step, carried out in the field and on hand specimen, purely detrital deposits were separated from automicrite facies, i.e. beds with automicrite, cement-filled, primary vugs and admixtures of skeletal carbonate and lithoclasts. In the second step, samples with automicrite facies were thin-sectioned and point counted. The categories used for point counting were (a) automicrite, (b) vugs and cement, (c) microspar or neomorphic spar, (d) skeletal grains and (e) internal sediments. At the platform top 46% of samples are pure detrital deposits, 27% consist of automicrite facies and 27% are too strongly altered by dolomitization to allow classification. At the margin–upper slope 68% of samples consist of automicrite facies, 22% are pure detrital sediments and 10% are strongly altered. At the lower slope 63% are detrital deposits, 10% automicrite facies and 27% are extensively dolomitized. The most important contributors to the automicrite facies are automicrite (41% on the platform top, 29% on the margin–upper slope, 28% on the lower slope) and early marine cement (35% on the platform top, 48% on the margin–upper slope, 27% on the lower slope). The amount of skeletal grains is less than 10%.The automicrite facies stabilized the platform margin and upper slope. Automicrite, abundant early marine cements and micro-organisms such as Tubiphytes, formed a rigid framework, thus substituting for the lack of a metazoan reef. On the upper slopes, the framework of automicrite facies stabilized the slope but intermittently. The automicrite layers are frequently dissected by sediment-filled fractures or are broken into clasts. We assume that they slid on the layers of loose detritus. Bigger slides turned into rubbly debris flows that formed metre-thick breccias at the lower slope and the proximal basin floor. The planar shape and steep angle of the clinoforms indicate that the large-scale geometry of the slope was not controlled by the automicrite but rather by non-cohesive layers of sand and rubble piled up to the angle of repose.The production mode of the Sella is comparable of that of a (mud) mound factory. This factory was highly productive: in 1 Ma, the platform aggraded over 300 m and prograded over 2000 m in all directions.  相似文献   

17.
The up-to-date petrological and microtextural information on the Ligurian Alps indicates that the metamorphic rocks from the oceanic lithosphere and the paleo-European continental margin underwent an alpine-type metamorphic evolution characterized by low dT/dP gradients. In particular, rocks from the Ligurian-Piedmontese oceanic lithosphere underwent an alpine metamorphism typical of alpine-type blueschist rocks. The distribution of the alpine metamorphic facies in paleo-European continental margin is closely related to the structural position of the different tectonic units. The prograde evolution frequently preserves paragenetic and textural relics of the earlier parageneses. If relics of the earlier parageneses are preserved, the rock exhibits continuous prograde reactions confirmed by strong compositional zoning of the metamorphic minerals. Therefore, these reactions lead to chemical and microtextural equilibrium relations, between the minerals, in limited domains of the rocks (microtextural sites). The main compositional aspect of coronitic textures is the mineral zoning, particularly when the minerals of the coronas are the consequence of a wide range of solid solutions. In such cases, the reacting minerals are armored and the kinetics are lowered. The prograde metamorphic evolution, which involved the rocks from the oceanic lithosphere and the paleo-European continental margin, is quite consistent with a subduction-type geodynamic process in different ages during alpine times.Mineral Abbreviations Ab albite - Acm acmite - Alm almandine - Amp amphibole - Ant antigorite - Act actinolite - Bt biotite - Ced celadonite - Chl chlorite - Chlrm chloromelanite - Chltd chloritoide - Cpx clinopyroxene - Di diopside - Ep epidote - Fo forsterite - Gl glaucophane - Gnt garnet - Gro grossular - Hed hedenbergite - Hor hornblende - Jd jadeite - Kfld K-feldspar - Lau laumontite - Lw lawsonite - Ma margarite - Mu muscovite - Omp omphacite - Pa paragonite - Ph phengite - Pl plagioclase - Py pyrope - Pyr pirophyllite - Prh prehnite - Pump pumpellyite - Qz quartz - Rieb riebeckite - Rut rutile - Tchu titanclinohumite - Tc talc - Tr tremolite - Zeo zeolites - Zo zoisite - Wm white mica  相似文献   

18.
In Santonian-Early Campanian sedimentary melanges of the External Liguride units (northern Apennine), slide blocks of subcontinental mantle and MOR basalts are associated with lithologies derived from the continental crust. One of these sedimentary melanges, the Mt. Ragola complex, is characterized by the close association of mantle ultramafic, mafic and quartzo-feldspathic granulites. Mafic granulites show a wide compositional range. They generally display a marked metamorphic layering, but undeformed rocks which preserve a gabbroic fabric are found locally. The most frequent lithologies are Al-spinel gabbronorites, generally containing minor olivine, and Fe-Ti oxidebearing gabbronorites. Troctolites, olivine gabbronorites and anorthosites were also recovered. Relics of primary textures as well as mineral and bulk-rock compositional variations indicate a comagmatic intrusive origin for the protoliths of the mafic granulites. This intrusive mafic complex underwent a subsolidus reequilibration under granulite facies conditions, at 0.6–0.9 GPa and 810–920°C, and was derived from crystallization at intermediate levels of tholeiite-derived liquids, possibly affected by crustal contamination. Its primary features are similar to those of the upper zone of the Ivrea layered complex. The gabbroic protolith for the granulites of External Liguride units were probably crystallized into the extending Adria lithosphere in relation to the initial stages of the opening of the western Tethys.  相似文献   

19.
M. T. HARRIS 《Sedimentology》1993,40(3):383-401
The Latemar reef buildup of the central Dolomites (northern Italy) provides a rare opportunity to examine an in-place Middle Triassic (Upper Anisian to Lower Ladinian) platform margin that is not strongly deformed or dolomitized. The margin lies between the flat lying platform interior and steeply dipping foreslope clinoforms. Across this transition, the depositional profile relates directly to a consistent lateral facies pattern: (1) restricted-biota grainstone of the platform interior, (2) ‘Tubiphytes’-rich boundstone and (3) diverse-biota grainstone that grades into (4) foreslope breccia beds. The boundstone and diverse-biota grainstone facies comprise the platform margin. The boundstone facies consists of a framework of small (< 10 cm) skeletal remains (< 10% by volume) with associated biotic crusts, internal sediments and syndepositional cements. Crusts and cements constitute most of the rock volume and created the boundstone fabric. Biotic crusts exhibit gravity-defying geometries and range from a light grey, ‘structure grumeleuse’ rind to dark grey, micritic laminae. Both cements and biotic crusts occur as redeposited talus in the foreslope talus deposits, indicating a syndepositional origin. The diverse-biota grainstone facies primarily consists of skeletal-peloidal grainstone with a diverse open marine biotic assemblage, in contrast to the restricted biota grainstones of the platform interior that have a low diversity, restricted marine biota. Metre scale hexacoral boundstone and centimetre-scale sponge boundstone and microbial boundstone occur as isolated patches (tens to hundreds of metres apart) within the diverse-biota grainstone facies. The depositional profile, facies zonation and biotic constituents all indicate that the Latemar buildup had a shallow water reef margin, in contrast to previous interpretations that these were upper slope reefs. The syndepositional biotic crusts and inorganic cementation played key roles in stabilizing the boundstone fabric to form a wave-resistant reef fabric.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号