首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major and trace element geochemistry of coexisting hornblendes and biotites from the Ambalavayal granite, northern Kerala, are presented. The hornblendes correspond to edenitic composition, whereas the biotites correspond to annite. The hornblendes typically show high Al2O3 contents (9·69–11·89%) comparable with those from anorogenic granites. The biotites are characteristically low Mg-type, similar to those reported from alkaline rocks. The distribution coefficients calculated for all the major and trace elements are presented and an evaluation of the nature of variation indicate near-chemical equilibrium conditions during the crystallization of the two minerals. The hornblende-biotite tie lines in the Fe3+?Fe2+?Mg compositional triangle, lie parallel to those of buffered biotites, indicating crystallization in an environment closed to oxygen and well above the Ni?NiO buffer. It is inferred that thefH2O increased towards the residual stage andfO2 values were high, in the range of 10?15 bars.  相似文献   

2.
Early Miocene igneous rocks associated with the Dalli porphyry ore body are exposed within the Urumieh-Dokhtar Magmatic Arc (UDMA). The Dalli porphyry Cu–Au deposit is hosted by subduction-related subvolcanic plutons with chemical composition from diorite to granodiorite, which intruded andesitic and dacitic volcanic rocks and a variety of sedimentary sequences. 40Ar/39Ar age data indicate a minimum emplacement age of ~21 million years for a potasically altered porphyritic diorite that hosts the porphyry system. The deposit has a proven reserve of 8 million tonnes of rock containing 0.75 g/t Au and 0.5% Cu. Chondrite-normalized rare earth element (REE) patterns for the subvolcanic rocks are characterized by light REE enrichments [(La/Sm) n ?=?2.57–6.40] and flat to gently upward-sloping profiles from middle to heavy REEs [(Dy/Yb) n ?=?0.99–2.78; (Gd/Yb) n ?=?1.37–3.54], with no significant Eu anomalies. These characteristics are generated by the fractionation of amphibole and the suppression of plagioclase crystallization from hydrous calc-alkaline magmas. In normalized multi-element diagrams, all analysed rocks are characterized by enrichments in large ion lithophile elements and depletions in high field strength elements, and display typical features of subduction-related calc-alkaline magmas. We used igneous mineral compositions to constrain the conditions of crystallization and emplacement. Biotite compositions plot above the nickel–nickel oxide (NNO) buffer and close to oxygen fugacity values defined by the hematite–magnetite (HM) buffer, indicating oxidizing conditions during crystallization. Assuming a minimum crystallization temperature of 775°C, the oxygen (fO2) and water (fH2O) fugacities are estimated to be 10?10.3 bars (~ΔNNO+4) and ≤748 bars, respectively, during the crystallization of biotite phenocrysts. The temperature and pressure conditions, estimated from temperature–corrected Al-in-hornblende barometry and amphibole-plagioclase thermometry, suggest that the hornblende phenocrysts in Dalli rocks crystallized at around 780 ± 20°C and 3.8 ± 0.4 kbar. An alternative method using the calcic amphibole thermobarometer indicates that the Dalli magmas were, on average, characterized by an H2O content of 4.3 wt.%, a relatively high oxygen fugacity of 10?11.0 bars (ΔNNO+1.3), and a hornblende phenocryst crystallization temperature of 880 ± 68°C and pressure of 2.6 ± 1.7 kbar.  相似文献   

3.
A Precambrian fayalite granite outcropping at Lower King, near Albany, Western Australia, is interpreted as a high-Fe2+/(Fe2+ + Mg) analogue of charnockite. Calculation of the original titanomagnetite composition from analytical data on ilmenomagnetite ‘exsolution’ intergrowths suggests initial crystallisation of opaque oxides at about 940°C and 10?12 bars fo2. This result indicates a magmatic origin for the rock. Other determinable points on the T-fo2 cooling curve of the fayalite granite pluton include crystallisation of biotite at roughly 800–820°C and 10?14.5 bars fo2, and final equilibration of opaque oxides below 550°C and 10?23 bars fo2. Mineralogical data on nearby granulite facies country rocks suggest a regional total pressure of roughly 5 kb, and hence the depth of pluton emplacement was probably around 18–19 km. Thus the Lower King fayalite granite is believed to have crystallised from water-deficient, high-T melt or partial melt generated, possibly from metasedimentary rocks, deep in the crust under granulite facies conditions.  相似文献   

4.
The reaction-displacement technique was applied to the end-member reaction annite = sanidine + magnetite + H2 in order to determine the activity of the annite component (a Ann) in iron biotites with variable degrees of the Tschermak's substitution ([6]Fe + [4]Si = [6]Al + [4]Al). Based on the simplified relation a Ann = f H 2/foH2 (foH2 = hydrogen fugacity of the end-member reaction at P, T), two types of experiments were performed at 700°C / 2 kbar: Type I used Fe-Al biotites of known starting composition together with sanidine + magnetite + H2O. This assemblage was exposed to various f H 2 conditions (f H 2 < foH2) produced in the pressure vessel either by using different ratios of water/oil as pressure medium (f H 2 in this case was measured by the hydrogen sensor technique), or by the Ni′NiO buffer. The composition of the Fe-Al biotites changed through incorporation or release of the annite component in response to the externally imposed f H 2. By using opposite biotite starting compositions, the equilibrium composition as a function of f H2 was bracketed. For type II, f H 2 in equilibrium with a specific combination of fine-grained Fe-Al biotite (+ sanidine + magnetite + H2O) was measured internally by application of the hydrogen sensor technique. Both type I and type II experiments yield consistent results demonstrating that a fine-grained assemblage of Fe-Al biotite (+ sanidine + magnetite + H2O) is able to act as a sliding-scale buffer. The final chemical composition of the Fe-Al biotite after the experiments was determined by electron microprobe and Mössbauer spectroscopy. The [4]Al and [6]Al in the biotites are coupled according to the Tschermak's substitution. In the tetrahedral sheet 0.1 Al-atoms per formula unit are present in excess to the amount required to balance [6]Al, and all Fe-Al biotites contain 8–10% Fe3+. Therefore, they are not members of the pure annite - siderophyllite join, but have an almost constant amount (15 Mol%) of two additional Fe3+-bearing components (ferri-siderophyllite and a vacancy end-member). The volume - composition relationship obtained does not indicate excess molar volumes of mixing for the annite (Ann) - siderophyllite (Sid) binary. The data are consistent with a molar volume of annite of 15.46 ± 0.02 Jbar–1 and of 15.06 ± 0.02 Jbar–1 for siderophyllite. The experimentally determined activity - composition relation shows that biotites on the join annite - siderophyllite deviate negatively from ideality. A symmetric interaction parameter WAnnSid is sufficient to represent the data within error. This was constrained as: W AnnSid = –29 ± 4 kJmol–1. This is in contradiction to empirical interaction parameters derived from natural assemblages for this binary that predict positive deviation from ideality. Reasons for this discrepancy are discussed.  相似文献   

5.
We use granular inclusions and phenocrysts in the Little Glass Mountain rhyolite flows to estimate temperature, pressure and the fugacities of O2, H2 and H2O. The compositions of magnetite-ilmenite are used to estimate temperature and oxygen fugacity. Fugacities of H2 and H2O are estimated from the compositions of associated biotite-sanidine-magnetite. PTotal depends on the compositions of magnetite -ferrosilite-silica. Lastly, hydrothermal experiments were conducted at the estimated T, P and fO2 to establish the beginning of melting of the most evolved of the inclusions in CO2-H2O fluids.The data suggest that the most evolved inclusions formed at ~ 830°C, a total pressure of 5200 bars, fO2 of 10?13 and PH2O ~ 1000 bars. Of these variables total pressure is most difficult to estimate accurately. The values of T, P etc., previously stated produce a maximum estimate of the depth of equilibration between host magma and the inclusions whereas, assuming PH2O = PTotal yields a minimum estimate. The physical conditions together with texture suggest a plutonic origin at a minimum depth of 3.4 km but no deeper than 15–18 km beneath the Medicine Lake Highland.The composition and mineralogy suggest that the rhyolite was derived from the dacite by crystal fractionation. The relation between dacite and associated basaltic or andesitic rocks is uncertain. The 87Sr86Sr ratios (essentially 0.7040 for both inclusions and lavas) do not require involvement of crustal rocks. A source in the uppermost mantle or lower lithosphere is considered most probable for the parental liquid which gave rise to the dacite.  相似文献   

6.
This study of the Pikes Peak batholith includes the mineralogy and petrology of quartz syenite at West Creek and of fayalite-bearing and fayalite-free biotite granite near Mount Rosa; major element chemistry of the batholith; comparisons with similar postorogenic, intracratonic, sodic to potassic intrusives; and genesis of the batholith.The batholith is elongate in plan, 50 by 100 km, composite, and generally subalkalic. It was emplaced at shallow depth 1,040 m. y. ago, sharply transects its walls and may have breached its roof. Biotite granite and biotite—hornblende granite are predominant; quartz syenite, fayalite granite and riebeckite granite are present in minor amounts.Fayalite-bearing and fayalite-free quartz syenite, fayalite-biotite granite and riebeckite granite show a well-defined sodic differentiation trend; the less sodic fayalite-free granites exhibit a broader compositional range and no sharp trends.Crystallization was largely at PH2O < Ptotal; PH2O approached Ptotal only at late stages. Aplite residual to fayalite-free biotite granite in the north formed at about 1,500 bars, or 5 km depth. Feldspar assemblages indicate late stages of crystallization at about 720°C. In the south ilmenite and manganian fayalite indicate fO2 of 10?17 or 10?18 bars. Biotite and fayalite compositions and the ‘granite minimum’ imply completion of crystallization at about 700°C and 1,500 bars. Nearby fayalite-free biotite granite crystallized at higher water fugacity.All types of syenite and granite contain 5–6% K2O through a range of SiO2 of 63–76%. Average Na2O percentages in quartz syenite are 6.2, fayalite granite 4.2, and fayalite-free granite 3.3 MgO contents are low, 0.03–0.4%; FeO averages 1.9–2.5%. FeO/Fe2O3 ratios are high. Fluorine ranges from 0.3 to 0.6%.The Pikes Peak intrusives are similar in mode of emplacement, composition, and probably genesis to rapakivi intrusives of Finland, the Younger Granites of Nigeria, Cape Ann Granite and Beverly Syenite, Mass., and syenite of Kungnat, Greenland, among others — allowing for different levels of erosion. A suite that includes gabbro or basalt, anorthosite, quartz syenite, fayalite granite, riebeckite granite, and biotite and/or hornblende granites is of worldwide occurrence.A model is proposed in which mantle-derived, convecting alkali olivine basaltic magma first reacts with K2O-poor lower crust of granulite facies to produce magma of quartz syenitic composition. The syenitic liquid in turn reacts with granodioritic to granitic intermediate crust of amphibolite facies to produce the predominant fayalite-free biotite and biotite-hornblende granites of the batholith. This reaction of magma and roof involves both partial melting and the reconstitution and precipitation of refractory phases, as Bowen proposed. Intermediate liquids include MgO-depleted and Na2O-enriched gabbro, which precipitated anorthosite, and alkali diorite. The heat source is the basaltic magma; the heat required for partial melting of the roof is supplied largely by heats of crystallization of phases that settle out of the liquid — mostly olivine, clinopyroxene and plagioclase.  相似文献   

7.
Analyses of 80 biotite, alkali feldspar, oligoclase, hornblende, Fe-Ti oxide separates from the coarse-grained granites of a late-hercynian epizonal diapir, the Ploumanac'h complex, Brittany, show that these minerals display a regular concentric cryptic layering related to fractional crystallization. The Ca, Mg, Ba, Sr, Cr, V content of minerals decreases as the Na, Fe, and Rb content increases. Biotites become more dioctahedral towards the outer residual syenogranite, with a correlative K deficiency. Trioctahedral biotites from the inner accumulative monzogranite are secondarily oxidized with a gain of Fe3+ and a loss of OH. This alteration id due to the percolation of exsolved fluids rich in H2O and containing a small amount of CO2, F, S, Cl. During this autometamorphic stage, trace elements like Rb, Sr are completely redistributed on the scale of hand specimens, with a restricted range of partition coefficients between biotite, perthite and oligoclase. This equilibration occurred at a temperature about 550 ° C and a fluid pressure about 1,000 bars, with f H2O probably less than 500 bars. A later stage of fluid circulation along fractures brings up a slight Li metasomatism. Biotites are a sensitive marker of both magmatic and postmagmatic stages of subsolvus or ‘wet’ plutonites.  相似文献   

8.
湖南宝山矿床处于坪宝矿带的北端,是湘南地区最大的铜多金属矿床。为了进一步探讨矿区内花岗质岩石的形成条件及成矿潜力,文章在详细的野外地质和岩相学观察的基础上,对与成矿密切相关的花岗闪长斑岩中的黑云母进行了详细的矿物化学分析。电子探针分析结果表明:宝山花岗闪长斑岩中的黑云母为铁质黑云母和镁质黑云母,其中,Ti介于0.18~0.30,且Mg/(Mg+Fe2+)值介于0.42~0.58,属于典型的岩浆成因黑云母;黑云母的氧化系数为0.16~0.26,w(Mg O)为8.17%~11.72%,平均9.3%,MF值范围为0.38~0.50,指示其岩体属于壳幔混源型的I型花岗岩;岩体中以黑云母的全铝含量计算的结晶压力为97~174 MPa,相应的结晶深度为3.67~6.57 km,平均深度为5.12 km。其log f(O2)变化范围为-14.5~-12.8,表明黑云母是在较高氧逸度条件下结晶形成的,有利于铜矿的形成。  相似文献   

9.
The influence of oxygen fugacity (fO2) and temperature on the valence and structural state of iron was experimentally studied in glasses quenched from natural aluminosilicate melts of granite and pantellerite compositions exposed to various T-fO2 conditions (1100–1420°C and 10?12–10?0.68 bar) at a total pressure of 1 atm. The quenched glasses were investigated by Mössbauer spectroscopy. It was shown that the effect of oxygen fugacity on the redox state of iron at 1320–1420°C can be described by the equation log(Fe3+/Fe2+) = k log(fO2) + q, where k and q are constants depending on melt composition and temperature. The Fe3+/Fe2+ ratio decreases with decreasing fO2 (T = const) and increasing temperature (fO2 = const). The structural state of Fe3+ depends on the degree of iron oxidation. With increasing Fe3+/Fe2+ ≥ 1, the dominant coordination of Fe3+ changes from octahedral to tetrahedral. Ferrous iron ions occur in octahedral (and/or five-coordinated) sites independent of Fe3+/Fe2+.  相似文献   

10.
Interaction of igneous rocks with river (rain) water in the systems granite-water, basalt-water, and dunite-water open with respect to carbon dioxide (PCO2 = 10?4, 10?3, and 10?2 bar) and oxygen (PO2 from 10?81 to 10?1 bar) is numerically simulated at 25 and 50°C and a mass ratio of water and rock R/W ≤ 10. Equilibrium simulations indicate that, first, the differences in the mineralogical composition of the transformation products of the igneous rocks are insignificant, and second, Cu extraction from minerals of the rocks is optimal at Eh from +200 to ?100 mV. Simulations of the systems with regard for the dissolution rates of minerals indicate that the chemical weathering time of the rocks is few hundred thousands years.  相似文献   

11.
Oxygen fugacity (fO2) in the Earth’s mantle has a bearing on the problems of the chemical differentiation of the Earth’s materials and formation of the chemical and phase state of its shells. This paper addresses some problems concerning changes in the redox state of the upper mantle over geologic time and through its depth and the possible influence of fO2 stratification in the interiors on geochemical processes. Among these problems are the formation of fluids enriched in H2O, CO2, CH4,and H2; the possible influence of reduced fluid migration from mantle zones with low fO2 values on reactions in the lithosphere; and the formation of films of silicate liquids with high H2O and CO2 contents, which could be responsible for metasomatic transformations in rocks. The formation of a metallic core and accompanying large-scale melting of the silicate part of the Earth are the early mechanisms of the chemical differentiation of the mantle that must have had an effect on the redox state and the composition of volatile components in planetary materials. The molten metallic and silicate phases were prone to gravitational migration, which affected the formation of the metallic core. Volatile components had to be simultaneously formed in the zones of large-scale melting of the early Earth. The composition of these volatiles was largely controlled by the interaction of hydrogen and carbon, the two major gas-forming elements in the mantle, with melt under low fO2 values. A remarkable feature is that, despite fairly low fO2 values imposed by the presence of a metallic phase, both reduced (CH4 and H2) and oxidized species of hydrogen and carbon (H2O, OH? and CO 3 ?2 ) are stable in the melt. This peculiarity of carbon and hydrogen dissolution in reduced melts may be crucial for the elucidation of mechanisms for the formation of initial amounts of CO2 and H2O connected with incipient melting in the reduced mantle.  相似文献   

12.
Experiments have been carried out to determine the temperature, oxygen fugacity (fO2) and compositional dependence of the tracer diffusion coefficient (D) of calcium in olivine. These data constrain the diffusion coefficient over the temperature range 900 to 1500°C for the three principal crystallographic axes. Well constrained linear relationships between the reciprocal of the absolute temperature and log(D) exist at any given oxygen fugacity. There is a strong dependence of the diffusion coefficient on oxygen fugacity with D ∝ fO2(1/3). This makes a knowledge of the T-fO2 path followed by geological samples a prerequisite for modelling Ca diffusion in olivine. The best fitting preexponential factor (Do) and activation energy (E) to the Arrhenius equation log (D) = log [Do exp(−E/RT)] + 0.31Δ log fO2 for Ca diffusion in olivine at a given oxygen fugacity (fO2*) are given by:diffusion along [100]: log [Do (m2/s)] = −10.78 ± 0.43; E = 193 ± 11 kJ/moldiffusion along [010]: log [Do (m2/s)] = −10.46 ± 0.37; E = 201 ± 10 kJ/moldiffusion along [001]: log [Do (m2/s)] = −10.02 ± 0.29; E = 207 ± 8 kJ/molwhere Δ log fO2 = log[fO2*] − log[10−12] with fO2* in units of bars. There is no measurable compositional dependence of the diffusion coefficient between Fo83 and Fo92. Diffusion in Fo100 has a much higher activation energy than in Fe-bearing olivine and has a weaker fO2 dependence.  相似文献   

13.
Copper–gold mineralization at the world‐class Batu Hijau porphyry deposit, Sumbawa Island, Indonesia, is closely related to the emplacement of multiple stages of tonalite porphyries. Petrographic examination indicates that at least two texturally distinct types of tonalite porphyries are currently recognized in the deposit, which are designated as “intermediate tonalite” and “young tonalite”. They are mineralogically identical, consisting of phenocrysts of plagioclase, hornblende, quartz, biotite and magnetite ± ilmenite, which are set in a medium‐coarse grained groundmass of plagioclase and quartz. The chemical composition of the rock‐forming minerals, including plagioclase, hornblende, biotite, magnetite and ilmenite in the tonalite porphyries was systematically analyzed by electron microprobe. The chemical data of these minerals were used to constrain the crystallization conditions and fluorine–chlorine fugacity of the corresponding tonalitic magma during its emplacement and crystallization. The crystallization conditions, including temperature (T), pressure (P) and oxygen fugacity (fO2), were calculated by applying the hornblende–plagioclase and magnetite–ilmenite thermometers and the Al‐in‐hornblende barometer. The thermobarometric data indicate that the tonalite porphyries were emplaced at 764 ± 22°C and 1.5 ± 0.3 × 105 kPa. If the pressure is assumed to be lithostatic, it is interpreted that the rim of hornblende and plagioclase phenocrysts crystallized at depths of approximately 5.5 km. As estimated from magnetite–ilmenite thermometry, the subsolidus conditions of the tonalite intrusion occurred at temperatures of 540–590°C and log fO2 ranging from ?20 to ?15 (between Ni‐NiO and hematite–magnetite buffers). This occurred at relatively high fO2 (oxidizing) condition. The fluorine–chlorine fugacity in the magma during crystallization was determined on the basis of the chemical composition of magmatic biotite. The calculation indicates that the fluorine–chlorine fugacity, represented by log (fH2O)/(fHF) and (fH2O)/(fHCl) in the corresponding tonalitic magma range from 4.31 to 4.63 and 3.62 to 3.79, respectively. The chlorine fugacity (HCl) to water (H2O) is relatively higher than the fluorine fugacity (HF to water), reflecting a high activity of chlorine in the tonalitic magma during crystallization. The relatively higher activity of chlorine (rather than fluorine) may indicate the significant role of chloride complexes (CuCl2? and AuCl2?) in transporting and precipitating copper and gold at the Batu Hijau deposit.  相似文献   

14.
Kyzylkumite has been found in Cr-V-bearing metamorphic rocks of the Sludyanka Complex, Southern Baikal region; it has been identified by X-ray powder diffraction method. This is a late secondary mineral developed after Ti-V-oxides (schreyerite, berdesinskiite) and V-bearing rutile and titanite. Kyzylkumite represents a new structural type with composition Ti4V 2 3+ O10(OH)2 corresponding to octahedral coordination of Ti4+ and V3+. Its unit-cell dimensions are: a = 8.4787(1), b = 4.5624(1), c = 10.0330(1) Å, β = 93.174(1)°. The ideal formula of kyzylkumite Ti4V 2 3+ O10(OH)2 corresponds to composition, wt %: 65.56 TiO2, 30.75 V2O3, 3.69 H2O. Indeed, the contents (wt %) of these constituents range from 62 to 70 TiO2 and from 23 to 33 V2O3. Variations in contents and the Ti/V value are caused by partial substitution V3+ for V4+, isovalent substitutions Ti4+ and V3+ for V4+ and Cr3+, respectively, and coupled substitution V3+ + OH? ? Ti4+ + O2?. Smyslova et al. (1981)—the discovereres of kyzylkumite—assumed its composition to be the same as for schreyerite V 2 3+ Ti3O9 that principally different from kyzylkumite from the Sludyanka Complex. Therefore, re-examination of the kyzylkumite holotype or cotype from its type locality is needed.  相似文献   

15.
A.M.R. Neiva 《Lithos》1981,14(2):149-163
In the area of Franzilhal, S. Lourenço and Pombal, central northern Portugal, occur rocks ranging from hornblende-biotite tonalite to muscovite-biotite granite. The distribution of some major and trace elements in the rocks and in the biotite shows an apparent calc-alkalic trend of differentiation. The behaviour of K, Li, Rb, Cs and K/Rb, Cr.103/Fe3+, Ni.103/Mg, Li.103/Mg, Cs.103/K ratios of the rocks and of F of biotite cannot be explained by mineral fractionation, but can be described in terms of hybridization. The tonalite, granodiorites and biotite-muscovite granite are hybrid rocks formed by assimilation of pelitic sediments and dolomitic marbles by the granite magma. The fO2 values range from 10?14.8 to 10?16.3; fO2 attains higher values during the crystallization of hybrid rocks than in the uncontaminated muscovite-biotite granite (GIII) magma. The fH2O and PH2O values generally increase and the fH2O/fHF ratio decreases in the hybrid rocks from tonalite to biotite-muscovite-bearing granodiorite and is smaller than in the uncontaminated granite magma.  相似文献   

16.
Type B CAIs are subdivided into B1s, with well-developed melilite mantles, and B2s, with randomly distributed melilite. Despite intensive study, the origin of the characteristic melilite mantle of the B1s remains unclear. Recently, we proposed that formation of the melilite mantle is caused by depletion of the droplet surface in volatile magnesium and silicon due to higher evaporation rates of volatile species compared to their slow diffusion rates in the melt, thus making possible crystallization of melilite at the edge of the CAI first, followed by its crystallization in the central parts at lower temperatures. Here, we present the results of an experimental study that aimed to reproduce the texture observed in natural Type B CAIs. First, we experimentally determined crystallization temperatures of melilite for three melt compositions, which, combined with literature data, allowed us to find a simple relationship between the melt composition, crystallization temperature, and composition of first crystallizing melilite. Second, we conducted a series of evaporation and cooling experiments exposing CAI-like melts to gas mixtures with different oxygen fugacities (fO2). Cooling of the molten droplets in gases with logfO2?IW-4 resulted in crystallization of randomly distributed melilite, while under more reducing conditions, melilite mantles have been formed. Chemical profiles through samples quenched right before melilite started to crystallize showed no chemical gradients in samples exposed to relatively oxidizing gases (logfO2?IW-4), while the near-surface parts of the samples exposed to very reducing gases (logfO2?IW-7) were depleted in volatile MgO and SiO2, and enriched in refractory Al2O3. Using these experimental results and the fact that the evaporation rate of magnesium and silicon from CAI-like melts is proportional to , we estimate that Type B1 CAIs could be formed by evaporation of a partially molten precursor in a gas of solar composition with . Type B2 CAIs could form by slower evaporation of the same precursors in the same gas with .  相似文献   

17.
The equilibrium conditions of the following reaction 2 zoisite +1 CO2?3 anorthite+1 calcite+1 H2O 2 Ca2Al3[O/OH/SiO4/Si2O7]+1 CO2?3 CaAl2Si2O8+1 CaCO3+1 H2O have been determined experimentally at total pressures of P j= 2000 bars, P f =5000 bars, and P f =7000 bars. Owing to the vertical position of the equilibrium curves in isobaric T- \(X_{{\text{CO}}_{\text{2}} }\) diagrams, the composition of the binary H2O-CO2 fluid phase coexisting with zoisite is independent of temperature in the temperature interval investigated. According to our experiments, orthorhombic zoisite is only stable in equilibrium with a fluid phase at a concentration of CO2 which is less than, respectively, ca. 2 Mol% CO2 at P f =2000 bars, ea. 6 Mol% at P f =5000 bars, and ca. 10 Mol% at P f =7000 bars. Thus, the fluid phase coexisting with zoisite is rich in H2O. While this is independent of temperature the experimental data demonstrate that the influence of pressure cannot be neglected: With increasing pressure the concentration of CO2 of the fluid phase coexisting with zoisite can rise a little. The position of the reaction studied, which is independent of temperature and exhibits small values of \(X_{{\text{CO}}_{\text{2}} }\) ,leads to two important petrogenetic conclusions:
  1. The occurrence of zoisite is an indicator for a CO2-poor and H2O-rich fluid composition during metamorphism of marly calcsilicates.
  2. If the concentration of CO2 of the fluid phase coexisting with zoisite exceeds the equilibrium value of \(X_{{\text{CO}}_{\text{2}} }\) calcite+anorthite+H2O is formed from zoisite+CO2. Thus, a considerable increase in the anorthite-content of plagioelase is possible.
  相似文献   

18.
在华北克拉通中部的山西云中山地区,新太古代花岗闪长质片麻岩中存在一些超镁铁质岩-镁铁质岩块及由斜长角闪岩、角闪变粒岩、石英岩和石榴夕线黑云片岩等岩石类型构成的变质表壳岩残片,其中的超镁铁质-镁铁质岩、斜长角闪岩和角闪变粒岩构成一套高镁火成岩组合。超镁铁质岩已变质为橄榄绿泥阳起片岩等岩石类型,呈变余斑状结构,橄榄石斑晶仍有保存;岩石SiO_2含量为39.22%~44.99%,Al_2O_3为8.82%~13.47%,Mg O为19.24%~22.13%,Na_2O+K_2O=0.71%~1.11%,CaO为5.75%~8.42%;Al_2O_3/TiO_2=14.8~17.4,CaO/Al_2O_3=0.60~0.84;化学成分上与科马提岩有一定的相似性。与之紧密伴生的斜长角闪岩也具有高镁特征,Mg O含量为11.28%~15.09%,铝、硅和碱质均偏低,具正铕异常,显示堆晶辉长岩的特征。非高镁斜长角闪岩有相对高的铝、硅和碱质,其原岩应为钙碱性玄武岩。角闪变粒岩样品的SiO_2含量为54.21%~55.71%,Al_2O_3为14.24%~15.49%,Mg O为6.26%~8.28%,Fe OT/Mg O=1.11~1.58,高钠低钾,Na_2O+K_2O=3.7%~4.78%,Na_2O/K_2O=5.15%~13.13,Mg#=53.0~61.5,属于高镁安山岩。由超镁铁质质岩-斜长角闪岩-角闪变粒岩构成的变质高镁火山岩组合具有钙碱性系列趋势。超镁铁质岩稀土元素含量总量较低,具有轻稀土富集和重稀土亏损的稀土型式;斜长角闪岩与超镁铁质岩比较,除富集大离子亲石元素和Cr、Ni明显较低外,具有相似的微量元素图谱形态。三种岩石类型在微量元素蛛网图上均显示出Ta、Nb、Ti负异常和Pb正异常。野外产状和岩石地球化学特征表明超镁铁质岩和高镁斜长角闪岩属于阿拉斯加型杂岩体,角闪变粒岩属于赞岐岩质高镁安山岩。在Zr/Nb-Nb/Th和Nb/Y-Zr/Y构造环境判别图解上显示出与俯冲相关的演化趋势,在Hf-Th-Ta、Nb/La-(La/Sm)N和Th/Yb-Nb/Yb图解上也落在岛弧钙碱性岩石区域。以上特征表明高镁火成岩组合形成于与板块俯冲相关的岛弧构造背景。野外地质关系和锆石U-Pb年龄限定高镁火成岩组合形成时代在~2.5Ga。云中山地区阿拉斯加型镁铁质-超镁铁质杂岩与赞岐岩质高镁安山岩共生,表明该地区存在新太古代的板块俯冲作用,为太古宙存在板块构造机制提供了新证据。  相似文献   

19.
Chemical analyses are given for actinolitic hornblendes of tonalitic rocks from the Hercynian belt of Northern Portugal. The distribution of elements between amphibole and co-existing biotite is studied. The composition of the amphiboles is analysed in the light of experimental data on amphiboles and the physical conditions of crystallization inferred from the study of the biotite and rock series. The data on the biotites lead to the definition of a temperature of 800°C for the crystallization of actinolitic hornblendes with Mg/(Mg + Fe) ratios of 0·72-0·61 at pressures of about 3 Kb and fO2 defined by FMQ.  相似文献   

20.
The apparent equilibrium constant for the exchange of Fe and Ni between coexisting olivine and sulfide liquid (KD = (XNiS/XFeS)liquid/(XNiSi12O2/XFeSi12O2)olivine; Xi = mole fraction) has been measured at controlled oxygen and sulfur fugacities (fO2 = 10−8.1 to 10−10 and fS2 = 10−0.9 to 10−1.7) over the temperature range 1200 to 1385°C, with 5 to 37 wt% Ni and 7 to 18 wt% Cu in the sulfide liquid. At log fO2 of −8.7 ± 0.1, and log fS2 of −0.9 to −1.7, KD is relatively insensitive to sulfur fugacity, but comparison with previous results shows that KD increases at very low sulfur fugacities. KD values show an increase with the nickel content of the sulfide liquid, but this effect is more complex than found previously, and is greatest at log fO2 of −8.1, lessens with decreasing fO2, and KD becomes independent of melt Ni content at log fO2 ≤ −9.5. The origin of this variation in KD with fO2 and fS2 is most likely the result of nonideal mixing of Fe and Ni species in the sulfide liquid. Such behavior causes activity coefficients to change with either melt oxygen content or metal/sulfur ratio, effects that are well documented for metal-rich sulfide melts.Application of these experimental results to natural samples shows that the relatively large dispersion that exists in KD values from different olivine + sulfide-saturated rock suites can be interpreted as arising from variations in fO2, fS2, and the nickel content of the sulfide liquid. Estimates of fO2 based on KD and sulfide melt composition in natural samples yields a range from fayalite-magnetite-quartz (FMQ)-1 to FMQ-2 or lower, which is in good agreement with previous values determined for oceanic basalts that use glass ferric/ferrous ratios. Anomalously high KD values recorded in some suites, such as Disko Island, probably reflect low fS2 during sulfide saturation, which is consistent with indications of low fO2 for those samples. It is concluded that the variation in KD values from natural samples reflects olivine-sulfide melt equilibrium at conditions within the T-fO2-fS2 range of terrestrial mafic magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号