共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— High‐performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated from a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P‐ or D‐type asteroids. If the Tagish Lake meteorite was indeed derived from these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds. 相似文献
2.
Robert W. Hilts Christopher D. K. Herd Danielle N. Simkus Greg F. Slater 《Meteoritics & planetary science》2014,49(4):526-549
The C2 ungrouped Tagish Lake meteorite preserves a range of lithologies, reflecting variable degrees of parent‐body aqueous alteration. Here, we report on soluble organic compounds, including aliphatic and aromatic hydrocarbons, monocarboxylic acids, and amino acids, found within specimens representative of the range of aqueous alteration. We find that differences in soluble organic compounds among the lithologies may be explained by oxidative, fluid‐assisted alteration, primarily involving the derivation of soluble organic compounds from macromolecular material. In contrast, amino acids probably evolved from precursor molecules, albeit in parallel with other soluble organic compounds. Our results demonstrate the role of parent‐body alteration in the modification of organic matter and generation of prebiotic compounds in the early solar system, and have implications for interpretation of the complement of soluble organic compounds in carbonaceous chondrites. 相似文献
3.
Abstract— The saturation magnetization, saturation remanent magnetization, the coercive, and remanent coercive force were determined at room and liquid nitrogen temperatures for three pieces of the Tagish Lake meteorite. The results are compared to similar data for four other chondrites (Allende, Murray, Orgueil, and Murchison). The data suggests that the Tagish Lake meteorite is magnetically homogeneous, and is not as magnetically hard as the comparison chondrites. The magnetization measurements indicate that it contains about 10–11% multi‐domain magnetite. Magnetic susceptibility measurements on all the samples from 77 K to room temperature showed a Verwey transition for all the samples which contain a significant amount of multi‐domain magnetite. The coercive force data further indicate that the magnetite in Tagish Lake is multi‐domain and that the grain size is small and approximately 4–9 μm. 相似文献
4.
Ted L. ROUSH 《Meteoritics & planetary science》2003,38(3):419-426
Abstract— The visible, near‐infrared, and mid‐infrared (0.3–25 μm) real and imaginary indices of refraction are derived from reflectance measurements of the Tagish Lake meteorite. These are compared to some real and imaginary indices of refraction of the individual minerals composing the Tagish Lake meteorite. From this comparison, it is clear that the imaginary indices of several individual minerals contribute to the estimated imaginary index of this meteorite. 相似文献
5.
Alan R. Hildebrand Phil J. A. McCausland Peter G. Brown Fred J. Longstaffe Sam D. J. Russell Edward Tagliaferri John F. Wacker Michael J. Mazur 《Meteoritics & planetary science》2006,41(3):407-431
Abstract— The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000, delivered ?10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper, we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments from a strewnfield at least 16 km long and 3 to 4 km wide. Nearly 1 kg of “pristine” meteorites were collected one week after the fall before new snow covered the strewnfield; the majority of the recovered mass was collected during the spring melt. Ground eyewitnesses and a variety of instrument‐recorded observations of the Tagish Lake fireball provide a refined estimate of the fireball trajectory. From its calculated orbit and its similarity to the remotely sensed properties of the D‐ and P‐class asteroids, the Tagish Lake carbonaceous chondrite apparently represents these outer belt asteroids. The cosmogenic nuclide results and modeled production indicate a prefall radius of 2.1–2.4 m (corresponding to 60–90 tons) consistent with the observed fireball energy release. The bulk oxygen‐isotope compositions plot just below the terrestrial fractionation line (TFL), following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.64 ± 0.02 g/cm3) is the same, within uncertainty, as the total bulk densities of several C‐class and especially D‐ and P‐class asteroids. The high microporosity of Tagish Lake samples (?40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids. 相似文献
6.
Christopher D. K. Herd Robert W. Hilts Aaron W. Skelhorne Danielle N. Simkus 《Meteoritics & planetary science》2016,51(3):499-519
The curation and handling of volatile‐bearing astromaterials is of prime importance in current and future plans for sample return missions to targets containing organic compounds, ices, or other volatile components. We report on the specific curation constraints required for the preservation of the Tagish Lake meteorite, a C2 ungrouped chondrite that contains significant concentrations of organic matter, including compounds of prebiotic interest or volatile in character, and which was recovered from a frozen lake surface a few days after its fall. Here, we review the circumstances of the meteorite's handling, its complement of intrinsic and contaminant organic compounds, and an unusual reaction between some of the specimens and the Al foil in which they were enclosed. From our results, we derive the requirements for curation of the meteorite, and describe a specialized facility that enables its curation and handling. The Subzero Facility for Curation of Astromaterials consists of a purified Ar glove box enclosed within a freezer chamber, and enables investigations relevant to curation of samples at or below ?10 °C. We provide several recommendations based on insights obtained from the commissioning and initial use of the facility that are relevant to collection of freshly fallen meteorites, curation of volatile‐bearing meteorites and other astromaterials, and planning and implementation of curation plans for future sample return missions to volatile‐bearing targets. 相似文献
7.
Queenie H. S. Chan Aiko Nakato Yoko Kebukawa Michael E. Zolensky Tomoki Nakamura Jessica A. Maisano Matthew W. Colbert James E. Martinez A. L. David Kilcoyne Hiroki Suga Yoshio Takahashi Yasuo Takeichi Kazuhiko Mase Ian P. Wright 《Meteoritics & planetary science》2019,54(1):104-125
We present in this study the effects of short‐term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmothermometers. The kinetics of short‐term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites—potential analogues of the target asteroid Ryugu of the Hayabusa2 mission—which had experienced posthydration, short‐duration local heating. In an attempt to understand the effects of short‐term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X‐ray microscopy utilizing X‐ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s?σ* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long‐term internal heating. 相似文献
8.
Associations of organic matter with minerals in Tagish Lake meteorite via high spatial resolution synchrotron‐based FTIR microspectroscopy 下载免费PDF全文
We have investigated spatial and spectral associations between mineral species and organic matter in the Tagish Lake meteorite. Synchrotron‐based infrared microspectroscopy allowed us to spatially locate specific organic and inorganic compounds within multiple Tagish Lake grains with high spatial resolution. Generated two‐dimensional infrared maps present strong spatial association between aliphatic C‐H and OH in phyllosilicates in Tagish Lake grains. These observations indicate possible roles of phyllosilicates for the formation, evolution, and preservation of organic matter. Infared spectra of all studied Tagish Lake grains show a strong carbonate band, which also shows a weak but positive correlation with organic matter in some grains. However, intergrain correlation was not observed between carbonates and organics, which is likely due to the difference of carbonate occurrence, e.g., presence of larger grains or intergrowth of carbonates on phyllosilicates. Possible scenarios further explaining the observed associations of organics with phyllosilicates and carbonates are presented. 相似文献
9.
Cosette M. Gilmour Christopher D. K. Herd Pierre Beck 《Meteoritics & planetary science》2019,54(9):1951-1972
Here, we evaluate the extent of aqueous alteration among five pristine specimens of the ungrouped Tagish Lake carbonaceous chondrite (TL5b, TL11h, TL11i, TL4, and TL10a) using thermogravimetric analysis (TGA) and infrared (IR) transmission spectroscopy. Both TGA and IR spectroscopy have proven to be reliable methods for determining the extent of aqueous alteration among different carbonaceous chondrites, in particular the CM chondrites (e.g., Garenne et al. 2014), with which Tagish Lake shares some affinities. Using these two methods, our goal is to incorporate TL4 and TL10a into the known alteration sequence of TL5b < TL11h < TL11i (Herd et al. 2011; Blinova et al. 2014a). This study highlights the compositional variability of the Tagish Lake specimens, which we ascribe to its brecciated nature. Our TGA and IR spectroscopy results are congruent with the reported alteration sequence, allowing us to introduce the TL4 and TL10a specimens in the following order: TL4 < TL5b ≤ TL10a < TL 11h < TL11i. Notably, these two specimens appear to be similar to the least altered lithologies previously reported, and the alteration of Tagish Lake is similar to that experienced by lesser altered members of the CM chondrites (>CM1.6). Based on these findings, Tagish Lake could be considered a 1.6–2.0 ungrouped carbonaceous chondrite. Visible and near‐IR reflectance measurements of Tagish Lake were also acquired in this study to revisit the Tagish Lake parent body connection. While other studies have paired Tagish Lake with D‐ and T‐type asteroid parent bodies, the reflectance spectra acquired in this study are variable among the different Tagish Lake specimens in relation to their alteration sequences; results match with spectra characteristic of C‐, X‐, Xc‐, and D‐type asteroids. The heterogeneity of Tagish Lake coupled with its low albedo makes the parent body connection a challenge. 相似文献
10.
L. BINET D. GOURIER S. DERENNE S. PIZZARELLO L. BECKER 《Meteoritics & planetary science》2004,39(10):1649-1654
Abstract— The radicals in the insoluble organic matter (IOM) from the Tagish Lake meteorite were studied by electron paramagnetic resonance and compared to those existing in the Orgueil and Murchison meteorites. As in the Orgueil and Murchison meteorites, the radicals in the Tagish Lake meteorite are heterogeneously distributed and comprise a substantial amount (?42%) of species with a thermally accessible triplet state and with the same singlet‐triplet gap, ΔE ?0.1 eV, as in the Orgueil and Murchison meteorites. These species were identified as diradicaloid moieties. The existence of similar diradicaloid moieties in three different carbonaceous chondrites but not in terrestrial IOM strongly suggests that these moieties could be “fingerprints” of the extraterrestrial origin of meteoritic IOM and markers of its synthetic pathway before its inclusion into a parent body. 相似文献
11.
Danielle N. Simkus Jos C. Aponte Jamie E. Elsila Robert W. Hilts Hannah L. McLain Christopher D. K. Herd 《Meteoritics & planetary science》2019,54(6):1283-1302
The Tagish Lake carbonaceous chondrite exhibits a unique compositional heterogeneity that may be attributed to varying degrees of aqueous alteration within the parent body asteroid. Previous analyses of soluble organic compounds from four Tagish Lake meteorite specimens (TL5b, TL11h, TL11i, TL11v) identified distinct distributions and isotopic compositions that appeared to be linked to their degree of parent body processing (Herd et al. 2011; Glavin et al. 2012; Hilts et al. 2014). In the present study, we build upon these initial observations and evaluate the molecular distribution of amino acids, aldehydes and ketones, monocarboxylic acids, and aliphatic and aromatic hydrocarbons, including compound‐specific δ13C compositions, for three additional Tagish Lake specimens: TL1, TL4, and TL10a. TL1 contains relatively high abundances of soluble organics and appears to be a moderately altered specimen, similar to the previously analyzed TL5b and TL11h lithologies. In contrast, specimens TL4 and TL10a both contain relatively low abundances of all of the soluble organic compound classes measured, similar to TL11i and TL11v. The organic‐depleted composition of TL4 appears to have resulted from a relatively low degree of parent body aqueous alteration. In the case of TL10a, some unusual properties (e.g., the lack of detection of intrinsic monocarboxylic acids and aliphatic and aromatic hydrocarbons) suggest that it has experienced extensive alteration and/or a distinct organic‐depleted alteration history. Collectively, these varying compositions provide valuable new insights into the relationships between asteroidal aqueous alteration and the synthesis and preservation of soluble organic compounds. 相似文献
12.
Abstract— The flux of galactic cosmic rays (GCR) in the solar system appears to change with time. Based on the abundances in iron meteorites of cosmogenic nuclides of different half lives, Lavielle et al. (1999) found that the GCR flux increased in recent times (<100 Ma) by about 38% compared to average flux in the past 150 Ma to 700 Ma ago. A promising technique for calibrating the GCR flux during the past ?50 Ma, based on the 129I and 129Xe pair of nuclides, was discussed earlier (Marti 1986; Murty and Marti 1987). The 129I‐129Xen chronometer provides a shielding‐independent system as long as the exposure geometry remained fixed. It is especially suitable for large iron meteorites (Te‐rich troilite) because of the effects by the GCR secondary neutron component. Although GCR‐produced Xe components were identified in troilites, several issues require clarifications and improvements; some are reported here. We developed a procedure for achieving small Xe extraction blanks which are required to measure indigenous Xe in troilites. The 129Xe and 131Xe excesses (129Xen, 131Xen) due to neutron reactions in Te are correlated in a stepwise release run during the troilite decomposition. Our data show that indigenous Xe in troilite of Cape York has isotopic abundances consistent with ordinary chondritic Xe (OC‐Xe), in contrast to a terrestrial signature which was reported earlier. Two methods are discussed which assess and correct for an interfering radiogenic 129Xer component from extinct 129I. The corrected 129Xen concentration in troilite D4 of Cape York yields a cosmic ray exposure (CRE) age of 82 ± 7 Ma consistent, within uncertainties, with reported data (Murty and Marti 1987; Marti et al. 2004). 相似文献
13.
Ansgar Greshake Alexander N. Krot George J. Flynn Klaus Keil 《Meteoritics & planetary science》2005,40(9-10):1413-1431
Abstract— The Tagish Lake carbonaceous chondrite consists of heavily aqueously altered chondrules, CAIs, and larger mineral fragments in a fine‐grained, phyllosilicate‐dominated matrix. The vast majority of the coarse‐grained components in this meteorite are surrounded by continuous, 1.5 to >200 μm wide, fine‐grained, accretionary rims, which are well known from meteorites belonging to petrological types 2 and 3 and whose origin and modification is still a matter of debate. Texturally, the fine‐grained rims in Tagish Lake are very similar throughout the entire meteorite and independent of the nature of the enclosed object. They typically display sharp boundaries to the core object and more gradational contacts to the meteorite matrix. Compared to the matrix, the rims are much more finegrained and characterized by a significantly lower porosity. The rims consist of an unequilibrated assemblage of phyllosilicates, Fe,Ni sulfides, magnetites, low‐Ca pyroxenes, and forsteritic olivines, and are, except for a much lower abundance of carbonates, very similar to the Tagish Lake matrix. Electron microprobe and synchrotron X‐ray microprobe analyses show that matrix and rims are also very similar in composition and that the rims differ significantly from matrix and bulk meteorite only by being depleted in Ca. X‐ray elemental mapping and mineralogical observations indicate that Ca was lost during aqueous alteration from the enclosed objects and preferentially crystallized as carbonates in the porous matrix. The analyses also show that Ca is strongly fractionated from Al in the rims, whereas there is no fractionation of the Ti/Al‐ratios. Our data suggest that the fine‐grained rims in Tagish Lake initially formed by accretion in the solar nebula and were subsequently modified by in situ alteration on the parent body. This pervasive alteration removed any potential evidence for pre‐accretionary alteration but did not change the overall texture of the Tagish Lake meteorite. 相似文献
14.
Alexandra I. Blinova Christopher D. K. Herd M. John M. Duke 《Meteoritics & planetary science》2014,49(6):1100-1118
Four pristine specimens of the Tagish Lake C2 chondrite meteorite were previously determined through mineralogy, petrology, and organic chemistry to have been affected by aqueous alteration in the order (from least to most altered) TL5b < TL11h < TL11i, and TL11v as a mixture of the other specimens (Herd et al. 2011 ; Blinova et al. 2014 ). Here, we report the whole‐rock data for a total of 65 elements for the same four Tagish Lake samples as determined by ICP‐MS and ICP‐AES (utilizing the Parr bomb digestion method on small samples, approximately 50 mg), and by INAA. Our data demonstrate that the determined aqueous alteration sequence has a positive correlation with trace elements, such as K and Br that are mobile during aqueous alteration, which appear to be controlled by an increase of phyllosilicates from least to most altered samples. Yet, the homogeneity of other elements suggests that elemental mass transfer occurred on a localized scale and aqueous alteration was isochemical for these elements, similar to other primitive carbonaceous chondrites. By plotting data from three samples (TL5b, TL11h, and TL11i) on a Zn/Mn versus Sc/Mn diagram, we also confirm that the Tagish Lake meteorite is not a simple mixture of CI and CM material. 相似文献
15.
Daniel P. Glavin Jamie E. Elsila Hannah L. McLain Jos C. Aponte Eric T. Parker Jason P. Dworkin Dolores H. Hill Harold C. Connolly Dante S. Lauretta 《Meteoritics & planetary science》2021,56(1):148-173
The abundances, distributions, enantiomeric ratios, and carbon isotopic compositions of amino acids in two fragments of the Aguas Zarcas CM2 type carbonaceous chondrite fall and a fragment of the CM2 Murchison meteorite were determined via liquid chromatography time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. A suite of two‐ to six‐carbon aliphatic primary amino acids was identified in the Aguas Zarcas and Murchison meteorites with abundances ranging from ~0.1 to 158 nmol/g. The high relative abundances of α‐amino acids found in these meteorites are consistent with a Strecker‐cyanohydrin synthesis on these meteorite parent bodies. Amino acid enantiomeric and carbon isotopic measurements in both fragments of the Aguas Zarcas meteorites indicate that both samples experienced some terrestrial protein amino acid contamination after their fall to Earth. In contrast, similar measurements of alanine in Murchison revealed that this common protein amino acid was both racemic (D ≈ L) and heavily enriched in 13C, indicating no measurable terrestrial alanine contamination of this meteorite. Carbon isotope measurements of two rare non‐proteinogenic amino acids in the Aguas Zarcas and Murchison meteorites, α‐aminoisobutyric acid and D‐ and L‐isovaline, also fall well outside the typical terrestrial range, confirming they are extraterrestrial in origin. The detections of non‐terrestrial L‐isovaline excesses of ~10–15% in both the Aguas Zarcas and Murchison meteorites, and non‐terrestrial L‐glutamic acid excesses in Murchison of ~16–40% are consistent with preferential enrichment of circularly polarized light generated L‐amino acid excesses of conglomerate enantiopure crystals during parent body aqueous alteration and provide evidence of an early solar system formation bias toward L‐amino acids prior to the origin of life. 相似文献
16.
Matthew R. M. IZAWA Roberta L. FLEMMING Penelope L. KING Ron C. PETERSON Phil J. A. McCAUSLAND 《Meteoritics & planetary science》2010,45(4):675-698
Abstract– We have carried out a sample‐correlated spectroscopic and mineralogical investigation of samples from seven different collection sites of the Tagish Lake C2 chondrite. Rietveld refinement of high‐resolution powder X‐ray diffraction (XRD) data was used to determine quantitative major mineral abundances. Thermal infrared (400–4500 cm−1, 2.2–25.0 μm) spectra of the same samples were obtained using diffuse (biconical) reflectance infrared Fourier transform spectroscopy (DRIFTS). Our results are in good agreement with previous studies of the mineralogy of the Tagish Lake meteorite; we find however that Tagish Lake is more varied in major mineralogy than has previously been reported. In particular, we observed two new distinct lithologies, an inclusion‐poor magnetite‐ and sulfide‐rich lithology, and a carbonate‐rich, siderite‐dominated lithology in addition to the previously documented carbonate‐rich and carbonate‐poor lithologies. Grain density for each Tagish Lake sample was calculated from the measured mineral modal abundances and known mineral densities. For powders from three originally intact inclusion‐rich samples, the calculated grain density is 2.77 ± 0.05 g cm−3, in excellent agreement with those reported in the literature for other intact inclusion‐rich Tagish Lake samples. Tagish Lake disaggregated samples have a significantly higher calculated grain density due to their lower saponite‐serpentine content, likely a result of mineral separation in the meltwater holes from which they were collected; the disaggregated samples may not therefore adequately represent bulk samples of the Tagish Lake meteorite. The predominance of very fine‐grained material in the Tagish Lake samples investigated in this study is expected to produce infrared spectra representative of asteroidal regolith. Gypsum and talc have been found by XRD in powders from the inclusion‐rich, intact Tagish Lake samples in this study, and may have been present in the parent body; if present, these hydrous sulfates would complicate the interpretation of possible hydrated mineral features in asteroid infrared spectra. 相似文献
17.
18.
Alexandra I. Blinova Thomas J. Zega Christopher D. K. Herd Rhonda M. Stroud 《Meteoritics & planetary science》2014,49(4):473-502
Four samples (TL5b, TL11h, TL11i, and TL11v) from the pristine collection of the Tagish Lake meteorite, an ungrouped C2 chondrite, were studied to characterize and understand its alteration history using EPMA, XRD, and TEM. We determined that samples TL11h and TL11i have a relatively smaller proportion of amorphous silicate material than sample TL5b, which experienced low‐temperature hydrous parent‐body alteration conditions to preserve this indigenous material. The data suggest that lithic fragments of TL11i experienced higher degrees of aqueous alteration than the rest of the matrix, based on its low porosity and high abundance of coarse‐ and fine‐grained sheet silicates, suggesting that TL11i was present in an area of the parent body where alteration and brecciation were more extensive. We identified a coronal, “flower”‐like, microstructure consisting of a fine‐grained serpentine core and coarse‐grained saponite‐serpentine radial arrays, suggesting varied fluid chemistry and crystallization time scales. We also observed pentlandite with different morphologies: an exsolved morphology formed under nebular conditions; a nonexsolved pentlandite along grain boundaries; a “bulls‐eye” sulfide morphology and rims around highly altered chondrules that probably formed by multiple precipitation episodes during low‐temperature aqueous alteration (≥100 °C) on the parent body. On the basis of petrologic and mineralogic observations, we conclude that the Tagish Lake parent body initially contained a heterogeneous mixture of anhydrous precursor minerals of nebular and presolar origin. These materials were subjected to secondary, nonpervasive parent‐body alteration, and the samples studied herein represent different stages of that hydrous alteration, i.e., TL5b (the least altered) < TL11h < TL11i (the most altered). Sample TL11v encompasses the petrologic characteristics of the other three specimens. 相似文献
19.
Zdenk CEPLECHA 《Meteoritics & planetary science》2007,42(2):185-189
Abstract— A recently published meteoroid fragmentation model (FM) was applied to observational data on the Tagish Lake meteoric fireball. An initial mass of 56,000 kg, derived from seismic and infrasound data by Brown et al. (2002), proved to be consistent with a very low value of intrinsic ablation coefficient of 0.0009 s2 km?2. The average residual of the best fit to the observed light curve was ±0.10 stellar magnitude. The apparent ablation coefficient varied from 0.0009 to 1.52 s2 km?2 with an average value of 0.054 s2 km?2 (determined by the gross fragmentation [GF] model). The FM found 33 individual fragmentation events during the penetration of the 56,000 kg initial mass of the Tagish Lake meteoroid through the atmosphere, with five of the events fragmenting more than 10% of the instantaneous mass of the main body. The largest event fragmented 88% of the mass of the main body at a height of 34.4 km. The velocity of the main body mass of 2660 kg at a height of 29.2 km (the last observed light) was 13.1 km/s. Strong fragmentation at heights lower than 29.2 km is very probable. The extreme fragmentation process of the Tagish Lake meteoroid puts its classification well outside the IIIB type in the direction of less cohesive bodies. The light curve could not be explained at all by making use of only the apparent ablation coefficient and apparent luminous efficiency. 相似文献
20.
Michael P. Callahan Aaron S. Burton Jamie E. Elsila Eleni M. Baker Karen E. Smith Daniel P. Glavin Jason P. Dworkin 《Meteoritics & planetary science》2013,48(5):786-795
The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography‐mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot‐water extracts with high relative abundances of β‐alanine and γ‐amino‐n‐butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight‐chained amine‐terminal n‐ω‐amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of ?24‰ ± 6‰ for β‐alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n‐ω‐amino acids may be due to a high temperature Fischer‐Tropsch‐type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses. 相似文献