首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微量元素在幔源矿物与热液之间分配系数的差异是造成地幔不均一的一个重要因素,对于认识地球演化、元素的分异和板块构造具有重要的意义。热液的组成、矿物的结构、温度、压力以及氧逸度都与分配系数密切相关。不同微量元素在相同矿物或热液中的分配系数存在差别,而相同的元素在不同矿物中的分配系数也可能出现很大的变化,这是研究微量元素分异和不同地幔端员形成的理论基础。在较低的温度和压力下,热液的组成对分配系数的影响很大,随着温度和压力的升高,热液组成的影响逐渐减弱,而矿物的组成与结构的影响逐渐增大。由于分配系数影响因素的复杂性,因此在考虑地球深部微量元素的迁移和分异时需慎重对待。  相似文献   

2.
In this paper, we examine the distribution of incompatible elements in Earth’s mantle based on data reported for 20 mantle xenoliths collected from 5 localities worldwide. A structural model combined with an element partitioning model forms the basis for our analyses. The former separates a bulk peridotite into mineral crystal lattices, interfaces (grain and interphase boundaries), and intra- and inter-granular inclusions as sites for incompatible elements. The latter relates the distribution of elements among these sites based on lattice strain theory. By treating both intra- and inter-granular inclusions as a melt-like phase, the combined models successfully reproduce the relative concentrations of incompatible elements among minerals, clean rock (reconstituted from mineral compositions and mineral mode), and whole rock. The analyses reveal common signatures in the rocks: (1) incompatible elements in the crystal lattices of olivine, orthopyroxene and clinopyroxene achieved chemical equilibrium. (2) Olivine, orthopyroxene and clinopyroxene grains contain similar amounts of an intra-granular, melt-like component possibly in the form of sub-micron inclusions with weight (≈volume) fractions between 5 × 10−5 and 1 × 10−2. (3) All rocks contain an inter-granular melt-like component with a fraction between 10−4 and 10−2, well above the amount expected to be stored along interfaces. (4) Fractions of the inter- and intra-granular components are positively correlated, indicating that they were originated from the same process. (5) The inter- and intra-granular melt-like phases are chemically equilibrated with other structural components. Based on plausible upwelling rates for mantle xenoliths, it is unlikely that the melt-like component formed during ascent. Instead, its ubiquitous appearance, its invisibility to optical microscopy, and its absorption of the incompatible elements in a manner similar to a melt phase even at sub-solidus condition, all might be explained by the presence of amorphous silica precipitates such as those observed previously in naturally occurring and experimentally annealed mantle composites. From the mineral mode, grain size, and mineral plus whole rock concentrations of incompatible elements, we can ascribe the chemical signatures of xenoliths to achievement of chemical equilibrium at mantle conditions rather than to a consequence of some disequilibrium (metasomatic) effect as has been done previously. Although it should be tested by additional analytical studies, our model will make it possible to determine whether or not a rock is chemically equilibrated in terms of the distribution of incompatible elements or if a metasomatic (disequilibrium) event is required.  相似文献   

3.
Intergrowth defects (intercalation of different structure types) are common in some rock-forming minerals and can be demonstrated to affect trace element distributions, especially when new crystallographic site types are introduced by the intercalated structure. Atoms that do not readily substitute into the host crystal may be incorporated within the intercalated structure. Trace element partitioning patterns, EPR data and mineral dislocation densities suggest that dislocations do not exercise primary control on the partitioning of compatible trace elements, but the effects of dislocations on incompatible elements may be important.Intergrowth defects in geologically important materials include disordered intergrowth structures in Sulfides and the stacking and chain-width disorder that is found in pyroxenes and amphiboles from a range of occurrences. Intergrowth defects may range from a few Ångstroms wide to optically resolvable size. It is important to evaluate their effects when interpreting geological trace element data.  相似文献   

4.
Analyses of trace elements in the mineral phases of granulites provide important information about the trace element distribution in the lower crust. Since granulites are often considered residues of partial melting processes, trace element characteristics of their mineral phases may record mineral/melt equilibria thus giving an opportunity to understand the nature and composition of melts in the lower continental crust. This study provides an extensive set of mineral trace element data obtained by LA-ICP-MS analyses of mafic and intermediate granulites from Central Finland. Mass balance calculations using the analytical data indicate a pronounced contribution of the accessory minerals apatite for the REE and ilmenite for the HFSE. Coherent mineral/mineral ratios between samples point to a close approach to equilibrium except for minerals intergrown with garnet porphyroblasts. Mineral trace element data were used for the formulation of a set of D mineral/melt partition coefficients that is applicable for trace element modelling under lower crustal conditions. D mineral/melt were derived by the application of predictive models and using observed constant mineral/mineral ratios. The comparison of the calculated D mineral/melt with experimental data as well as the relationship between mineral trace element contents and a leucosome with a composition close to an equilibrium melt provides additional constraints on mineral/melt partitioning. The D values derived in this study are broadly similar to magmatic partition coefficients for intermediate melt compositions. They provide a first coherent set of D values for Sc, V, Cr and Ni between clinopyroxene, amphibole, garnet, orthopyroxene, ilmenite and melt. In addition, they emphasize the strong impact that ilmenite exerts on the distribution of Nb and Ta.  相似文献   

5.
地幔矿物与水流体之间元素分配系数的研究及意义   总被引:1,自引:0,他引:1  
流体是地球内部物质和能量迁移最为活跃的介质,它在造成地幔化学的富集和亏损,产生具有不同地球化学特征的幔源岩浆岩石,以及促进壳幔物质的再循环过程等诸多方面都起了重大作用,高温高压下实验模拟流体与地幔岩石和矿物之间痕量元素分配作用是揭示地幔流体的组成与性质,地幔中不同元素类型之间或内部的分异作用,地幔交代介质的类型与特征,岛孤玄武岩高场强元素亏损原因的一个重要的手段,并对近年来有关高温高压下流体与地幔矿物之间痕量元素分配作用的实验模拟研究进行了评述,分析了制约流体与地幔矿物之间痕量元素分配系数的因素,总结了这些研究的应用。  相似文献   

6.
对松多榴辉岩中单矿物进行的LA-ICP-MS原位微区微量元素分析研究结果表明,石榴石主要富集中、重稀土元素和Y,同时具有高丰度的Sc、V、Cr和Co等元素;绿辉石中的微量元素以中稀土元素、Sr、Sc、V、Cr、Co、Ni和Ti为主,含有一定量的Zr、Hf等。石榴石、绿辉石、角闪石和绿帘石中均显示轻稀土元素亏损的特点,表明在退变质过程中没有发生明显的富轻稀土元素的外来流体交代作用,因而其微量元素矿物地球化学的某些特点不同于苏鲁地区的榴辉岩。石榴石变斑晶中某些元素(如Ti、Zr)的分带性暗示了榴辉岩在紧随峰期变质之后的折返过程中发生了降压增温过程。榴辉岩主要变质矿物中微量元素的分配显然受到矿物主量元素的分配所控制,如MgO在石榴石和绿辉石之间的分配对Ni、Co、Ti分配的控制以及CaO的分配对Sr、Y、REE分配的控制等。退变质过程中矿物的形成或分解以及物理化学条件的改变都可以引起矿物间微量元素的重新分配。由绿辉石退变质而形成的角闪石,较之原先的绿辉石,其微量元素配分曲线总体特征会发生变化,但元素总体丰度相近,某些元素特点相似,又反映了绿辉石和角闪石之间的成生联系。金红石是Ti、Nb、Ta、Zr、Hf的主要赋存矿物,而与之共生的绿帘石所表现出来的高场强元素的亏损特征表明了金红石的存在所带来的影响。  相似文献   

7.
For accurate mathematical modeling of trace-element partitioning during igneous fractionation, adsorption should be considered. Because of adsorption, the partitioning of elements between liquid and a surface layer of a crystal is often not the same as the partitioning between liquid and the solid crystal at true equilibrium. In some minerals e.g. high-calcium pyroxene, the effect of adsorption during crystal growth may be very important; this is suggested by the frequent occurrence of sector zoning in augite, and the wide range in measured partition coefficients for such elements as rare earths. The ions which are enriched by adsorption are usually those which are favored substituents according to Goldschmidt's rules. In other minerals, uptake of trace elements may be closer to equilibrium partitioning, rather than being determined by kinetic factors. For example, the relative partitioning of REE, U, Th and Pb into feldspars is qualitatively predicted by Pauling's rules for complex ionic crystals, rather than by Goldschmidt's rules.  相似文献   

8.
Major and trace element mineral/melt partition coefficients are presented for phases on the liquidus of fertile peridotite at 23-23.5 GPa and 2300 °C. Partitioning models, based on lattice-strain theory, are developed for cations in the ‘8-fold’ sites of majorite and Mg-perovskite. Composition-dependant partitioning models are made for cations in the 12-fold site of Ca-perovskite based on previously published data. Dmin/melt is extremely variable for many elements in Ca-perovskite and highly correlated with certain melt compositional parameters (e.g. CaO and Al2O3 contents). The 8-fold sites in Mg-perovskite and majorite generally have ideal site radii between 0.8 and 0.9 Å for trivalent cations, such that among rare-earth-elements (REE) Dmin/melt is maximum for Lu. Lighter REE become increasingly incompatible with increasing ionic radii. The 12-fold site in Ca-perovskite is larger and has an ideal trivalent site radius of ∼1.05 Å, such that the middle REE has the maximum Dmin/melt. Trivalent cations are generally compatible to highly compatible in Ca-perovskite giving it considerable leverage in crystallization models. Geochemical models based on these phase relations and partitioning results are used to test for evidence in mantle peridotite of preserved signals of crystal differentiation in a deep, Hadean magma ocean.Model compositions for bulk silicate Earth and convecting mantle are constructed and evaluated. The model compositions for primitive convecting mantle yield superchondritic Mg/Si and Ca/Al ratios, although many refractory lithophile element ratios are near chondritic. Major element mass balance calculations effectively preclude a CI-chondritic bulk silicate Earth composition, and the super-chondritic Mg/Si ratio of the mantle is apparently a primary feature. Mass balance calculations indicate that 10-15% crystal fractionation of an assemblage dominated by Mg-perovskite, but with minor amounts of Ca-perovskite and ferropericlase, from a magma ocean with model peridotite-based bulk silicate Earth composition produces a residual magma that resembles closely the convecting mantle.Partition coefficient based crystal fractionation models are developed that track changes in refractory lithophile major and trace element ratios in the residual magma (e.g. convecting mantle). Monomineralic crystallization of majorite or Mg-perovskite is limited to less than 5% before certain ratios fractionate beyond convecting mantle values. Only trace amounts of Ca-perovskite can be tolerated in isolation due to its remarkable ability to fractionate lithophile elements. Indeed, Ca-perovskite is limited to only a few percent in a deep mantle crystal assemblage. Removal from a magma ocean of approximately 13% of a deep mantle assemblage comprised of Mg-perovskite, Ca-perovskite and ferropericlase in the proportions 93:3:4 produces a residual magma with a superchondritic Ca/Al ratio matching that of the model convecting mantle. This amount of crystal separation generates fractionations in other refractory lithophile elements ratios that generally mimic those observed in the convecting mantle. Further, the residual magma is expected to have subchondritic Sm/Nd and Lu/Hf ratios. Modeling shows that up to 15% crystal separation of the deep mantle assemblage from an early magma ocean could have yielded a convecting mantle reservoir with 143Nd/144Nd and 176Hf/177Hf isotopic compositions that remain internal to the array observed for modern oceanic volcanic rocks. If kept in isolation, the residual magma and deep crystal piles would grow model isotopic compositions that are akin to enriched mantle 1 (EM1) and HIMU reservoirs, respectively, in Nd-Hf isotopic space.  相似文献   

9.
The transfer of fluid and elements from subducting crust to the overlying mantle wedge is a fundamental process affecting arc magmatism and the chemical differentiation of the Earth. While the production of fluid by breakdown of hydrous minerals is well understood, the liberation of trace elements remains generally unconstrained. In this paper, we evaluate the behaviour of trace elements during prograde metamorphism and dehydration using samples of high-pressure, low-temperature metamorphic rocks from New Caledonia. Samples examined include mafic and pelitic rock-types that range in grade from lawsonite blueschist to eclogite facies, and represent typical lithologies of subducting crust. Under lawsonite blueschist facies conditions, the low temperatures of metamorphism inhibit equilibrium partitioning between metamorphic minerals and allow for the persistence of igneous and detrital minerals. Despite this, the most important hosts for trace-elements include lawsonite, (REE, Pb, Sr), titanite (REE, Nb, Ta), allanite (LREE, U, Th), phengite (LILE) and zircon (Zr, Hf). At epidote blueschist to eclogite facies conditions, trace-element equilibrium may be attained and epidote (REE, Sr, Th, U, Pb), garnet (HREE), rutile (Nb, Ta), phengite (LILE) and zircon (Zr, Hf) are the major trace-element hosts. Chlorite, albite, amphibole and omphacite contain very low concentrations of the investigated trace elements. The comparison of mineral trace-element data and bulk-rock data at different metamorphic grades indicates that trace elements are not liberated in significant quantities by prograde metamorphism up to eclogite facies. Combining our mineral trace-element data with established phase equilibria, we show that the trace elements considered are retained by newly-formed major and accessory minerals during mineral breakdown reactions to depths of up to 150 km. In contrast, significant volumes of fluid are released by dehydration reactions. Therefore, there is a decoupling of fluid release and trace element release in subducting slabs. We suggest that the flux of trace elements from the slab is not simply linked to mineral breakdown, but results from complex fluid-rock interactions and fluid-assisted partial melting in the slab.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00410-003-0495-5.Editorial responsibility: J. Hoefs  相似文献   

10.
盘石山幔源透辉石微量元素地球化学   总被引:4,自引:0,他引:4       下载免费PDF全文
支霞臣  李彬贤 《地质科学》1995,30(4):384-392
用质子探针和电子探针分别测定盘石山幔源橄揽岩包体中透辉石、橄榄石的微量元素和主量元素丰度;用X-射线荧光光谱法测定包体全岩的主量和微量元素丰度。定量讨论微量元素的分布和分配。其中绝大部分Sr、Zr、Ti、Na赋存在透辉石中,绝大部分Mn、Zn、Ni赋存在橄揽石中,在T=1194-1435K范围,分配系数变化如下:InDOl/CpxZn=1.44-2.19;InDOl/CpxMn=0.21-0.40,InDOl/CpxTi=4.76-5.61,InDOl/CpxNi(平均值)=2.20.透辉石中Ti/Zr=42-103,低于原始地幔值,由地幔隐性交代作用造成。  相似文献   

11.
This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H 2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine+orthopyroxene+clinopyroxene+spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H 2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H 2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H 2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H 2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca 2+ content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H 2O on the structure of silicate melts.  相似文献   

12.
Carbonate rocks and natural waters exhibit a wide range in the concentration and isotopic composition of strontium. This wide range and the quantifiable covariation of these parameters can provide diagnostic tools for understanding processes of fluid-rock interaction. Careful consideration of the uncertainties associated with trace element partitioning, sample heterogeneity and fluid-rock interaction mechanisms is required to advance the application of the trace element and isotope geochemistry of strontium to studies of diagenesis, goundwater evolution, ancient seawater chemistry and isotope stratigraphy. A principal uncertainty involved in the application of Sr concentration variations to carbonate systems is the large range of experimental and empirical results for trace element partitioning of Sr between mineral and solution. This variation may be a function of precipitation rate, mineral stoichiometry, crystal growth mechanism, fluid composition and temperature. Calcite and dolomite in ancient limestones commonly have significantly lower Sr concentrations (20–70 p.p.m.) than would be expected from published trace element distribution coefficient values and Sr/Ca ratios of most modern sedimentary pore waters. This discrepancy probably reflects the uncertainties associated with determining distribution coefficient values. As techniques improve for the analytical measurement and theoretical modelling of Sr concentration and isotopic variations, the petrological analysis of carbonate samples becomes increasingly important. The presence of even small percentages of non-carbonate phases with high Rb concentrations and high 87 Sr86 Sr values, such as clay minerals, can have significant effects on the measured 87 Sr/86 Sr values of carbonate rocks, due to the decay of 87Rb to 87 Sr. For example, a Permian marine limestone with 50 p.p.m. Sr and 1 p.p.m. Rb will have a present-day 87 Sr/86 Sr value that is >2 × 10?4 higher than its original value. This difference is an order of magnitude greater than the analytical uncertainty, and illustrates the importance of assessing the need for and accuracy of such corrections. A quantitative evaluation of the effects of water-rock interaction on Sr concentrations and isotope compositions in carbonates strengthens the application of these geochemical tracers. Geochemical modelling that combines the use of trace elements and isotopes can be used to distinguish between different mechanisms of water-rock interaction, including diffusive and advective transport of diagenetic constituents in meteoric pore fluids during the recrystallization of carbonate minerals. Quantitative modelling may also be used to construct diagnostic fluid-rock interaction trends that are independent of distribution coefficient values, and to distinguish between mixing of mineral end-members and fluid-rock interaction.  相似文献   

13.
Development of several different microbeam techniques permits in situ analysis of trace elements in natural and synthetic mineral assemblages, which in turn makes possible determination of two-mineral partitioning behavior for trace elements (D-values). With the experimental approach, control of compositional and physical variables is possible, but equilibrium needs to be carefully assessed, and in some instances compositions and optimal experimental conditions are different from the natural situation. With the natural mineral approach, physical conditions must be assessed independently, accepting the uncertainties involved in geothermobarometric determinations based on coexisting mineral compositions. A potentially complex history of formation must be unravelled as well, with the attendant possibility of non-equilibrium.

Comparison of D-values determined for coexisting amphibole and Ca-clinopyroxene indicates overall good agreement for Sr, Zr, Hf, Y, and REE, but significant discrepancy for Rb, Ba, Nb, and Ta (experimental values much lower than natural values). For coexisting Ca-clinopyroxene and garnet, the spread of data is greater and fewer elements can be compared (Rb, Ba, Nb, and Ta data are not adequate). However Sr, Y, Zr, Hf, and Nd-Lu (of the rare-earth elements) agree reasonably well, but La and Ce experimental values for clinopyroxene/garnet are much lower than the natural values. These differences for both mineral pairs may be attributed in part to critical compositional differences between synthetic and natural minerals, where compositional factors play a key role in controlling accommodation of trace elements in the mineral structure. A second factor is the possibile existence of minute inclusions rich in trace elements trapped in the natural minerals. These inclusions may be submicroscopic and unavoidable, even by microbeam analysis. More work on both experimental and natural systems should resolve the discrepancies and help to realize the full potential for using trace elements to assess petrological processes in the mantle, where knowledge of D-value variation as a function of composition, pressure, and temperature is essential.  相似文献   

14.
Ni, Co, and Zn are widely distributed in the Earth’s mantle as significant minor elements that may offer insights into the chemistry of melting in the mantle. To better understand the distribution of Ni2+, Co2+, and Zn2+ in the most abundant silicate phases in the transition zone and the upper mantle, we have analyzed the crystal chemistry of wadsleyite (Mg2SiO4), ringwoodite (Mg2SiO4), forsterite (Mg2SiO4), and clinoenstatite (Mg2Si2O6) synthesized at 12–20 GPa and 1200–1400 °C with 1.5–3 wt% of either NiO, CoO, or ZnO in starting materials. Single-crystal X-ray diffraction analyses demonstrate that significant amounts of Ni, Co, and Zn are incorporated in octahedral sites in wadsleyite (up to 7.1 at%), ringwoodite (up to 11.3 at%), olivine (up to 2.0 at%), and clinoenstatite (up to 3.2 at%). Crystal structure refinements indicate that crystal field stabilization energy (CFSE) controls both cation ordering and transition metal partitioning in coexisting minerals. According to electron microprobe analyses, Ni and Co partition preferentially into forsterite and wadsleyite relative to coexisting clinoenstatite. Ni strongly prefers ringwoodite over coexisting wadsleyite with \({D}_{\text{Ni}}^{\text{Rw}/\text{Wd}}\)?=?4.13. Due to decreasing metal–oxygen distances with rising pressure, crystal field effect on distribution of divalent metal ions in magnesium silicates is more critical in the transition zone relative to the upper mantle. Analyses of Ni partitioning between the major upper-mantle phases implies that Ni-rich olivine in ultramafic rocks can be indicative of near-primary magmas.  相似文献   

15.
Mantle peridotites of the External Liguride (EL) Units (Northern Apennines) mainly consist of fertile spinel-lherzolites partially recrystallized to plagioclase-facies assemblages, and are consequently appropriate to investigate the interphase element partitioning related to the transition from spinel- to plagioclase-facies stability field. Evidence for the development of the plagioclase-facies assemblage is mainly given by: (1) large exsolution lamellae of orthopyroxene and plagioclase within spinel-facies clinopyroxene; (2) plagioclase rims around spinel; (3) granoblastic domains made up of olivine+plagioclase±clino-and orthopyroxene. In situ major and trace [REE (rare-earth elements), Ti, Sc, V, Cr, Sr, Y, Zr and Ba] element mineral analyses have been performed, by electron and ion probe, on selected samples which show the progressive development of the plagioclase-bearing assemblage. The main compositional variations observed during the change from spinel- to plagioclase-facies minerals are as follows: (1) clinopyroxenes decrease in Al, Na, Sr, Eu/Eu* and increase in Y, V, Sc, Cr, Zr and Ti; (2) amphiboles decrease in Eu/Eu*, Sr, Ba and increase in Zr and V; (3) spinels decrease in Al and increase in Cr and Ti. The most striking feature is the decoupling in the behaviour of similarly incompatible elements (D about 0.1) in clinopyroxene, e.g. Sr decrease is mirrored by Zr increase. Massbalance calculations indicate that the trace element interphase redistribution documented in the EL peridotites occurred in a closed system and in response to the metamorphic reaction governing the transition from the spinel- to the plagioclase-facies stability field. The observed element partitioning reveals, moreover, that subsolidus re-equilibration processes in the upper mantle produce HFSE (high-field-strength element)/REE fractionation in minerals, which must be evaluated for a reliable determination of mineral-melt distribution coefficients. The results of this study furnish evidence for subsolidus metamorphic evolution during decompression, without concomitant partial melting processes. This is consistent with the interpretation that the EL peridotites represent subcontinental lithospheric mantle emplaced at the surface in response to lithospheric thinning and tectonic denudation mechanisms related to the Triassic-Jurassic rifting of the Ligure-Piedmontese basin.  相似文献   

16.
Many rheological and transport properties of rocks are determined by the grain boundary structures of their constituent minerals. These grain boundaries often also hold a high concentration of dopant ions. Here, as a first step towards modelling the transport and rheological behaviour of the lower mantle, we report the results of lattice static simulations on the surface structures of Fe2+ and Ca2+-doped orthorhombic MgSiO3-perovskite. For all the surfaces we studied, the energies of the doped structures are lowered, sometimes by more than 1 J/m2, with respect to the pure surfaces. From our calculated crystal morphologies, we predict that the grains become more tabular as the concentration of Fe2+ ions increases, while under equilibrium conditions the grains are cubic. By calculating the replacement energies of Mg2+ by Fe2+ and Ca2+ ions in the six outermost surface layers, we conclude that these divalent ions would tend to segregate onto the crystal surfaces. We suggest, therefore, that the grain boundary structure and rheology of MgSiO3-perovskite dominated rocks will be strongly affected by the presence of minor elements in the lower mantle.  相似文献   

17.
刘劲鸿 《地学前缘》2020,27(5):48-60
吉林蛟河地幔岩碎块是被碱性橄榄玄武岩岩浆喷发携带至地壳浅部或地表的。碱性橄榄玄武岩中地幔岩碎块含量40%~55%,局部达60%以上;碎块大小不等,一般直径以5~10 cm居多,大者达20~35 cm,故定名为地幔岩集块熔岩(岩流)。地幔岩碎块以尖晶石二辉橄榄岩和尖晶石斜辉橄榄岩碎块为主,纯橄榄岩次之,未发现石榴石橄榄岩;胶结物为碱性橄榄玄武岩岩浆。本次研究发现地幔岩内存在丰富的、不同成分和形态的熔融微区。熔融微区类型以其形状可分为滴状、扇状、球状、不规则状、短脉状和环边状,以其特征新生矿物分为OL型、K型、Na+Chl型、PL型、OL+SP型、C+SP型和SP+Chl+Ser型。熔融微区结构为玻基间隐结构或放射状结构;矿物呈骸晶状、中空为玻璃质;残余玻璃脱玻化,产生少量针状和不透明黑色雏晶。熔融微区的形状、结构、物质组成及矿物结晶等特征具有标型性,表征这些熔融体是在上地幔深度保存的幔源岩熔融交代的产物,幔源结晶岩是固相残留。该幔源岩经历强火山喷发使其发生爆炸的地质事件,导致K、Na、Al、Ca易熔组分和H2O、CO2等挥发分开始熔融和气体释放,营造快速固化结晶和淬火的环境。这些少量的熔融物择优占据矿物间隙、裂隙、位错或晶体缺陷处汇聚并熔融交代相邻矿物,不断扩展空间,遂形成滴状等特征形状的“微区”。由于熔融程度不同,产生的熔融物的化学成分和结晶程度也有差异,所代表的初始岩浆性质也不一样,可以是超基性或碱性橄榄玄武质,抑或碧玄岩质岩浆。从检测出的这些信息证实,蛟河地幔岩是被不一致熔融抽取后的地幔残留,即岩石圈地幔。  相似文献   

18.
Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in eightfold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g., Wood and Blundy 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and silica-oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48–59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2–16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6–32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in sixfold coordination is substantially greater than that of Mg2+; hence, we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between eightfold Ca sites and sixfold Fe and Mg sites such that Yb and Lu exist dominantly in sixfold coordination. We also outline a REE-based method of identifying pyroxene/melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in eightfold coordination in pyroxene. Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y and Ho, Zr and Hf, and Nb and Ta.  相似文献   

19.
Clinopyroxenes (cpx) in abyssal and ophiolitic peridotites are commonly analyzed for lithophile trace element abundances in order to estimate degrees of melting and porosity conditions during melt extraction, assuming that these data reflect near-solidus conditions. During cooling, however, cpxs always exsolve into parallel lamellae of low-Ca enstatite and high-Ca diopside. This may potentially lead to redistribution of the initial trace element budget. Since orthopyroxene (opx) cannot significantly host most incompatible trace elements, exsolution will lead to an enrichment in the cpx lamellae. In order to address a possibly exsolution-controlled partitioning between cpx and opx, we have obtained major and trace element mineral compositions on 14 plagioclase-free ocean floor mantle rocks. They cover the entire abyssal peridotite compositional spectrum from very fertile to highly depleted compositions. The mean volume proportion of opx lamellae in cpx porphyroclasts lies around 15% of the original cpx. For the light to middle rare earth elements, the enrichment in the measured cpx exsolution is exclusively controlled by these phase proportions. Relative to these highly incompatible trace elements, solely Ti and Yb partition significantly into opx. Lamellar interpyroxene partition coefficients, estimated from NanoSIMS analyses, are around three times as high as the ones for near-solidus bulk pyroxene. The equilibration temperatures for the exsolution lamella are slightly higher than 800°C. The bulk cpx can be reconstructed using the lamellar proportions and their relative partitioning. The implication of such a reconstruction is that the cpx rare earth element patterns shift almost in parallel to lower values. These shifts, however, do not affect mantle melting models proposed thus far for mid-ocean ridges. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
We have determined the partition coefficients of a large number of trace elements between CaTiO3 perovskite and anhydrous silicate melts at atmospheric pressure and 3 GPa. Determination of the concentration limits of Henrys law behaviour in the CaO-Al2O3–SiO2–TiO2 system reveals that the incorporation of rare earth elements (REE) and tetravalent large ion lithophile elements (LILE4+ such as U and Th) at the Ca-site of CaTiO3 perovskite occurs with charge compensation through Ca-vacancy formation rather than by coupled substitution of Al for Ti. When melt composition is varied, we find that partition coefficients for REE and Th are strong functions of the CaO content of the melt. The observed trends are in excellent agreement with those predicted from the Ca-vacancy model. Given that they adopt the same crystal structure and have similar trace element partitioning behaviour, CaTiO3 perovskite and the deep mantle phase CaSiO3 perovskite can be considered analogous to one another. When the analogy is pursued in detail, we find that partitioning into both phases follows the composition-dependence predicted by the Ca-vacancy model. Thus, substitution of REE, U4+ and Th into CaSiO3 in the lower mantle also occurs with Ca-vacancy formation to balance charge. Furthermore when 2+, 3+ and 4+ partition coefficients for both phases are plotted as functions of CaO melt content, the trends for CaSiO3 and CaTiO3 appear to be continuous. This surprising result means that partitioning into Ca-perovskite is independent of pressure and temperature and also of whether or not the host is CaSiO3 or CaTiO3. One implication is that CaSiO3 crystallising from a peridotitic magma ocean may have partition coefficients for Th and U up to about 400. Crystallisation and sequestration of as little as 0.25 volume% of this phase in the lower mantle early in earth history would make a significant contribution to current mantle heat production.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号