首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a report about the fourth Arab Impact Cratering and Astrogeology Conference (AICAC IV) that took place in Algiers at the USTHB (Université des Sciences et Technologie Houari Boumedienne, Algiers, Algeria) in the presence of the presidents of the USTHB and Boumerdès Universities, the Director of CRAAG (Centre de Recherche en Astronomie, Astrophysique et Géophysique), and the General Director of the National Administration for Scientific Research (NASR/DGRSDT). This series of conferences aims to promote research interest for impact cratering in the Arab world and beyond, including for instance in African countries. In spite of persistently restraining travel measures to Algeria, the fourth edition held in Algiers was marked by continuous international participation, with participants from seven different countries. This conference focused on presentations of scientific results in the research fields related to planetology, meteorites, and impact craters. In particular, the Algerian impact structures were under the spotlights during both oral and poster sessions. During this conference, the presence of freshly graduated Ph.D. students and new Ph.D. projects related to impact cratering or meteoritic science was a positive sign for the consolidation of research groups in this domain in the Arab world and Africa. Therefore, international cooperation or external support and funding are still needed to ensure the development of this scientific discipline in this part of the world.  相似文献   

2.
The Flynn Creek impact structure is an approximately 3.8 km diameter, marine‐target impact structure, which is located in north central Tennessee, USA. The target stratigraphy consists of several hundreds of meters of Ordovician carbonate strata, specifically Knox Group through Catheys‐Leipers Formation. Like other, similarly sized marine‐target impact craters, Flynn Creek's crater moat‐filling deposits include, in stratigraphic order, gravity‐driven slump material, aqueous resurge deposits, and secular (postimpact) aqueous settling deposits. In the present study, we show that Flynn Creek also possesses previously undescribed erosional resurge gullies and an annular, sloping surface that comprises an outer crater rim surrounding an inner, nested bowl‐shaped crater, thus forming a concentric crater structure. Considering this morphology, the Flynn Creek impact structure has a crater shape that has been referred to at other craters as an “inverted sombrero.” In this paper, we describe the annular rim and the inner crater at Flynn Creek using geographic information system technology. We relate these geomorphic features to the marine environment of crater formation, and compare the Flynn Creek impact structure with other marine‐target impact structures having similar features.  相似文献   

3.
Abstract— In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m‐wide sag pond, surrounded by a saddle‐shaped rim from the Sirente plain (Abruzzi, Italy), is the first‐discovered meteoritic crater of Italy. Sub‐circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present‐day soils from these sag ponds and from the Sirente sags (both the main “crater” and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the “Sirente crater.” For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the “Sirente crater,” together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of “transumanza” (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social‐economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are best interpreted as natural dolines. In fact, reported radiocarbon ages for the formation of the main sag pond and of the smaller sags differ (significantly) by more than two millennia, thus excluding that they were all contemporaneously formed by a meteoritic impact.  相似文献   

4.
We comment briefly on a recent paper by Fuhrmann which claims that about half of the sample of halo stars in the solar neighbourhood presented by Fuchs and Jahreiß [A&A 329 (1998) 81] are actually thick disc stars. By referring to star counts in the CADIS survey we argue that this is rather unlikely.  相似文献   

5.
Abstract– The near‐circular Colônia structure, located in the southern suburbs of the mega‐city of São Paulo, Brazil, has attracted the attention of geoscientists for several decades due to its anomalous character and the complete absence of any plausible endogenous geologic explanation for its formation. Origin by impact cratering has been suggested repeatedly since the 1960s, but no direct evidence for this has been presented to date. New seismic data have been recently acquired at Colônia, providing new insights into the characteristics and possible layering of infill of the structure, as well as into the depth to the underlying basement. We review the current knowledge about the Colônia structure, present the new seismic data, and discuss the existing—as yet still indirect—evidence for a possible origin by an impact. The new data suggest the existence of a sedimentary fill of approximately 275 m thickness and also the presence of two intermediate zones between sediment and basement: an upper zone that is approximately 65 m thick and can be interpreted as a possible crater‐fill breccia, whereas the other zone possibly represents fractured/brecciated basement, with a thickness of approximately 50 m. Although this depth to basement seems to be inconsistent with the expected geometry of a simple, bowl‐shape impact structure of such diameter, there are a number of still unconstrained parameters that could explain this, such as projectile nature, size and velocity, impact angle, and particularly the current erosion depth.  相似文献   

6.
Abstract– Shock metamorphism can occur at transient pressures that reach tens of GPa and well over 1000 °C, altering the target material on both megascopic and microscopic scales. This study explores the effects of shock metamorphism on crystalline, quartzofeldspathic basement material from the Haughton impact structure on Devon Island, Arctic Canada. Shock levels were assigned to samples based on petrographic examination of main mineral phases. Conventional shock classification schemes proved to incompletely describe the Haughton samples so a modified shock classification system is presented. Fifty‐two crystalline bedrock samples from the clast‐rich impact melt rocks in the crater, and one reference site outside of the crater, were classified using this system. The shock levels range from 0 to 7 (according to the new shock stage classification proposed here, i.e., stages 0–IV after the Stöffler classification), indicating shock pressures ranging from 0 to approximately 80 GPa. The second aspect of this study involved measuring bulk physical characteristics of the shocked samples. The bulk density, grain density, and porosity were determined using a water displacement method, a bead displacement method, and a Hepycnometer. Results suggest a nonlinear, negative correlation between density and shock level such that densities of crystalline rocks with original densities of approximately 3 g cm?3 are reduced to <1.0 g cm?3 at high shock levels. The results also show a positive nonlinear correlation between porosity and shock level. These data illustrate the effect of shock on the bulk physical characteristics of crystalline rocks, and has implications for assessing the habitability of shocked rocks.  相似文献   

7.
Petrofabrics in chondrites have the potential to yield important information on the impact evolution of chondritic parent asteroids, but studies involving chondritic petrofabrics are scarce. We undertook an analysis of the Pu?tusk H chondrite regolith breccia. Measurements of anisotropy of magnetic susceptibility and quantitative tomographic examination of metal grains are presented here and the results are compared with petrographic observations. The major fabric elements are in Pu?tusk shear fractures cutting the light‐colored chondritic clasts as well as brittly and semibrittly deformed, cataclased fragments in dark matrix of regolith breccia. Cataclasis is accompanied by rotation of silicate grains and frictional melting. Fabric of metal grains in chondrite is well defined and coherently oriented over the breccia, both in the clasts and in the cataclastic matrix. Metal grains have prolate shapes and they are arranged into foliation plane and lineation direction, both of which are spatially related and kinematically compatible to shear‐dominated deformational features. We argue that the fabric of Pu?tusk was formed in response to impact‐related noncoaxial shear strain. Deformation promoted brittle cataclastic processes and shearing of silicates, and, simultaneously, allowed for ductile metal to develop foliation and lineation. We suggest that plastic flow is the most probable mechanism for the deformation of metal grains in the shear‐dominated strain field. The process led also to the formation of large metal nodules and bands in the dark matrix of breccia.  相似文献   

8.
Abstract— Using an H‐plot analysis, we identify 234 currently known near‐Earth objects that are accessible for rendezvous with a “best case” delta‐V of less than 7 km/s. We provide a preliminary compositional interpretation and assessment of these potential targets by summarizing the taxonomic properties for 44 objects. Results for one‐half (22) of this sample are based on new spectroscopic measurements presented here. Our approach provides an easy‐to‐update method for giving guidelines to both observers and mission analysts for focusing on objects for which actual mission opportunities are most likely to be found. Observing prospects are presented for categorizing the taxonomic properties of the most accessible targets that are not yet measured.  相似文献   

9.
The term “suevite” has been applied to various impact melt‐bearing breccias found in different stratigraphic settings within terrestrial impact craters. Suevite was coined initially for impact glass‐bearing breccias from the Ries impact structure, Germany, which is the type locality. Various working hypotheses have been proposed to account for the formation of the Ries suevite deposits over the past several decades, with the most recent being molten‐fuel‐coolant interaction (MFCI) between an impact melt pool and water. This mechanism is also the working hypothesis for the origin of the bulk of the Onaping Formation at the Sudbury impact structure, Canada. In this study, the key characteristics of the Ries suevite, the Onaping Formation and MFCI deposits from phreatomagmatic volcanic eruptions are compared. The conclusion is that there are clear and significant lithological, stratigraphic, and petrographic observational differences between the Onaping Formation and the Ries suevite. The Onaping Formation, however, shares many key similarities with MFCI deposits, including the presence of layering, their well‐sorted and fine‐grained nature, and the predominance of vitric particles with similar shapes and lacking included mineral and lithic clasts. These differences argue against the viability of MFCI as a working hypothesis for genesis of the Ries suevite and for a required alternative mechanism for its formation.  相似文献   

10.
Abstract– We have performed forward magnetic and gravity modeling of data obtained during the 2007 expedition to the 3.7 km in diameter, circular, Tsenkher structure, Mongolia, in order to evaluate the cause of its formation. Extensive occurrences of brecciated rocks, mainly in the form of an ejecta blanket outside the elevated rim of the structure, support an explosive origin (e.g., cosmic impact, explosive volcanism). The host rocks in the area are mainly weakly magnetic, silica‐rich sandstones, and siltstones. A near absence of surface exposures of volcanic rocks makes any major volcanic structures (e.g., caldera) unlikely. Likewise, the magnetic models exclude any large, subsurface, intrusive body. This is supported by an 8 mGal gravity low over the structure indicating a subsurface low density body. Instead, the best fit is achieved for a bowl‐shaped structure with a slight central rise as expected for an impact crater of this size in mainly sedimentary target. The structure can be either root‐less (i.e., impact crater) or rooted with a narrow feeder dyke with relatively higher magnetic susceptibility and density (i.e., volcanic maar crater). The geophysical signature, the solitary appearance, the predominantly sedimentary setting, and the comparably large size of the Tsenkher structure favor the impact crater alternative. However, until mineralogical/geochemical evidence for an impact is presented, the maar alternative remains plausible although exceptional as it would make the Tsenkher structure one of the largest in the world in an unusual setting for maar craters.  相似文献   

11.
The ~5 km diameter Gow Lake impact structure formed in the Canadian Shield of northern Saskatchewan approximately 197 Myr ago. This structure has not been studied in detail since its discovery during a regional gravity survey in the early 1970s. We report here on field observations from a 2011 expedition that, when combined with subsequent laboratory studies, have revealed a wealth of new information about this poorly studied Canadian impact structure. Initially considered to be a prototypical central peak (i.e., a complex) impact structure, our observations demonstrate that Gow Lake is actually a transitional impact structure, making it one of only two identified on Earth. Despite its age, a well-preserved sequence of crater-fill impactites is preserved on Calder Island in the middle of Gow Lake. From the base upward, this stratigraphy is parautochthonous target rock, lithic impact breccia, clast-rich impact melt rock, red clast-poor impact melt rock, and green clast-poor impact melt rocks. Discontinuous lenses of impact melt-bearing breccia also occur near the top of the red impact melt rocks and in the uppermost green impact melt rocks. The vitric particles in these breccias display irregular and contorted outlines. This, together with their setting within crater-fill melt rocks, is indicative of an origin as flows within the transient cavity and not an airborne mode of origin. Following impact, a hydrothermal system was initiated, which resulted in alteration of the crater-fill impactites. Major alteration phases are nontronite clay, K-feldspar, and quartz.  相似文献   

12.
The JHKL' photometry and 2.3–4 μm spectrophotometry of some M giants, S type stars and carbon stars are presented in this paper. It is found that in combination with IRAS data, the energy spectra in 1–100 μm of S type stars are intermediate between those of M giants and carbon stars, which are obviously different. The spectrophotometry in the near infrared shows that, besides carbon stars, which have HCN and C2H2 strong absorptions at 3.1 μm, some S type stars have the similar but weaker absorption in the same spectral region. However, no trace of any absorption at 3.1 μm can be seen in M giants. These results probably provide more evidence for the M-S-C sequence in the late stage of stellar evolution.  相似文献   

13.
We present geologic evidence suggesting that after the development of Mars' cryolithosphere, the formation of aquifers in southwestern Chryse Planitia and their subsequent disruption led to extensive regional resurfacing during the Late Hesperian, and perhaps even during the Amazonian. In our model, these aquifers formed preferentially along thrust faults associated with wrinkle ridges, as well as along fault systems peripheral to impact craters. The characteristics of degraded wrinkle ridges and impact craters in southwestern Chryse Planitia indicate a profound role of subsurface volatiles and especially liquid water in the upper crust (the upper one hundred to a few thousands of meters). Like lunar wrinkle ridges, the martian ones are presumed to mark the surface extensions of thrust faults, but in our study area the wrinkle ridges are heavily modified. Wrinkle ridges and nearby plains have locally undergone collapse, and in other areas they are associated with domical intrusions we interpret as mud volcanoes and mud diapirs. In at least one instance, a sinuous valley emanates from a modified wrinkle ridge, further indicating hydrological influences on these thrust-fault-controlled features. A key must be the formation of volatile-rich crust. Primary crustal formation and differentiation incorporated juvenile volatiles into the global crust, but the crustal record here was then strongly modified by the giant Chryse impact. The decipherable rock record here begins with the Chryse impact and continues with the resulting basin's erosion and infilling, which includes outflow channel activity. We propose that in Simud Vallis surface flow dissection into the base of the cryolithosphere-produced zones where water infiltrated and migrated along SW-dipping strata deformed by the Chryse impact, thereby forming an extensive aquifer in southwestern Chryse Planitia. In this region, compressive stresses produced by the rise of Tharsis led to the formation of wrinkle ridges. Zones of high fracture density within the highly strained planes of the thrust faults underlying the wrinkle ridges formed regions of high permeability; thus, groundwater likely flowed and gathered along these tectonic structures to form zones of elevated permeability. Volatile depletion and migration within the upper crustal materials, predominantly along fault systems, led to structurally controlled episodic resurfacing in southwestern Chryse Planitia. The erosional modification of impact craters in this region is linked to these processes. This erosion is scale independent over a range of crater diameters from a few hundred meters to tens of kilometers. According to our model, pressurized water and sediment intruded and locally extruded and caused crustal subsidence and other degradational activity across this region. The modification of craters across this wide range of sizes, according to our model, implies that there was intensive mobilization of liquid water in the upper crust ranging from about one hundred to several thousand meters deep.  相似文献   

14.
Abstract— A new olivine‐pigeonite ureilite containing abundant diamonds and graphite was found in the United Arab Emirates. This is the first report of a meteorite in this country. The sample is heavily altered, of medium shock level, and has a total weight of 155 g. Bulk rock, olivine (Fo79.8–81.8) and pyroxene (En73.9–75.2, Fs15.5–16.9, Wo8.8–9.5) compositions are typical of ureilites. Olivine rims are reduced with Fo increasing up to Fo96.1–96.8. Metal in these rims is completely altered to Fehydroxide during terrestrial weathering. We studied diamond and graphite using micro‐Raman and in situ synchrotron X‐ray diffraction. The main diamond Raman band (LO = TO mode at ?1332 cm?1) is broadened when compared to well‐ordered diamond single crystals. Full widths at half maximum (FWHM) values scatter around 7 cm?1. These values resemble FWHM values obtained from chemical vapor deposition (CVD) diamond. In situ XRD measurements show that diamonds have large grain sizes, up to >5 μm. Some of the graphite measured is compressed graphite. We explore the possibilities of CVD versus impact shock origin of diamonds and conclude that a shock origin is much more plausible. The broadening of the Raman bands might be explained by prolonged shock pressure resulting in a transitional Raman signal between experimentally shock‐produced and natural diamonds.  相似文献   

15.
Riachão, located at S7°42′/W46°38′ in Maranhão State, northeastern Brazil, is a complex impact structure of about 4.1 km diameter, formed in Pennsylvanian to Permian sedimentary rocks of the Parnaíba Basin sequence. Although its impact origin was already proposed in the 1970s, information on its geology and shock features is still scarce in the literature. We present here the main geomorphological and geological characteristics of the Riachão impact structure obtained by integrated geophysical and remote sensing analysis, as well as geological field work and petrographic analysis. The identified lithostratigraphic units consist of different levels of the Pedra de Fogo Formation and, possibly, the Piauí Formation. Our petrographic analysis confirms the presence of shock‐diagnostic planar microdeformation structures in quartz grains of sandstone from the central uplift as evidence for an impact origin of the Riachão structure. The absence of crater‐filling impact breccias and melt rocks, shatter cones, as well as the restricted occurrence of microscopic shock effects, suggests that intense and relatively deep erosion has occurred since crater formation.  相似文献   

16.
Solar observations from millimeter to ultraviolet wavelengths show that there is a temperature minimum between photosphere and chromosphere. Analyses based on semi-empirical models locate this point at about 500 km above the photosphere. The consistency of these models has been tested by means of millimeter to infrared observations. We show that variations of the theoretical radial temperature profile near the temperature minimum impact the brightness temperature at centimeter, submillimeter, and infrared wavelengths, but the millimeter wavelength emission remains unchanged. We found a region between 500 and 1000 km above the photosphere that remains hidden to observations at the frequencies that we studied here.  相似文献   

17.
Abstract– Northwest Africa (NWA) 869 consists of thousands of individual stones with an estimated total weight of about 7 metric tons. It is an L3–6 chondrite and probably represents the largest sample of the rare regolith breccias from the L–chondrite asteroid. It contains unequilibrated and equilibrated chondrite clasts, some of which display shock‐darkening. Impact melt rocks (IMRs), both clast‐free and clast‐poor, are strongly depleted in Fe,Ni metal, and sulfides. An unequilibrated microbreccia, two different light inclusions and two different SiO2‐bearing objects were found. Although the matrix of this breccia appears partly clastic, it is not a simple mixture of fine‐grained debris formed from the above lithologies, but mainly represents an additional specific lithology of low petrologic type. We speculate that this material stems from a region of the parent body that was only weakly consolidated. One IMR clast and one SiO2‐bearing object show Δ17O values similar to bulk NWA 869, suggesting that both are related to the host rock. In contrast, one light inclusion and one IMR clast appear to be unrelated to NWA 869, suggesting that the IMR clast is contaminated with impactor material. 40Ar‐39Ar analyses of a type 4 chondrite clast yield a plateau age of 4402 ± 7 Ma, which is interpreted to be the result of impact heating. Other impact events are recorded by an IMR clast at 1790 ± 36 Ma and a shock‐darkened clast at 2216 ± 40 Ma, demonstrating that NWA 869 escaped major reset in the course of the event at approximately 470 Ma that affected many L–chondrites.  相似文献   

18.
Morente et al. [Morente, J.A., Portí, J.A., Salinas, A., Navarro, E.A., 2008. Icarus. doi:10.1016/j.icarus.2008.02.004] have recently presented a new analysis of the Permittivity, Wave and Altimetry (PWA) measurements made during the descent of the Huygens Probe through the atmosphere of Titan. They claimed the identification of several Schumann resonance harmonics and concluded in favor of a lightning activity on Titan. We report here several reasons for not endorsing this paper.  相似文献   

19.
Abstract We described lunar meteorite Dhofar 026 (Cohen et al. 2004) and interpreted this rock as a strongly shocked granulitic breccia (or fragmental breccia consisting almost entirely of granulitic‐breccia clasts) that was partially melted by post‐shock heating. Warren et al. (2005) objected to many aspects of our interpretation: they were uncertain whether or not the bulk rock had been shocked; they disputed our identification of the precursor as granulitic breccia; and they suggested that mafic, igneous‐textured globules within the breccia, which we proposed were melted by post‐shock heating, are clasts with relict textures. The major evidence for shock of the bulk rock is the fact that the plagioclase in the lithologic domains that make up 80–90% of the rock is devitrified maskelynite. The major evidence for a granulitic‐breccia precursor is the texture of the olivine‐plagioclase domain that constitutes 40—45% of the rock; Warren et al. apparently overlooked or ignored this lithology. Textures of the mafic, igneous‐textured globules, and especially of the vesicles they contain, demonstrate that these bodies were melted and crystallized in situ. Warren et al. suggested that the rock might have originally been a regolith breccia, but the textural homogeneity of the rock and the absence of solar wind—derived noble gases preclude a regolith‐breccia precursor. Warren et al. classified the rock as an impact‐melt breccia, but they did not identify any fraction that was impact melt.  相似文献   

20.
Arnus Vallis (AV) is a >300-km-long sinuous, rille located on the northeastern flank of the Syrtis Major volcano on Mars. Observational evidence presented here suggests that AV formed as an open lava channel that was at least partly incised into the pre-existing terrain. The lava source area consists of a sub-circular pit at the southwestern end of a 7-km-long straight section of channel. AV trends down slope from this source with an average bottom slope of 0.26% or 0.14°. Width varies from ∼1 km at the source to ∼0.6 km near the distal end, with a mean of 0.76 km. Depth decreases from ∼180 m at the source to ∼25 m near the distal end. The AV terminus is obscured by a large impact crater. We suggest that the material that flowed in AV must have been a relatively high temperature, low viscosity lava dynamically and perhaps compositionally similar to terrestrial komatiite or some lunar basalt lavas. If correct, this finding has implications for the mode of construction of Syrtis Major.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号