共查询到20条相似文献,搜索用时 0 毫秒
1.
Derek W. G. SEARS 《Meteoritics & planetary science》2012,47(5):916-926
Abstract– In this interview, Joseph Goldstein ( Fig. 1 ) recounts how he became interested in meteorites during his graduate studies working with Robert Ogilvie at MIT. By matching the Ni profiles observed across taenite fields in the Widmanstätten structure of iron meteorites with profiles he computed numerically he was able to determine cooling rates as the meteorites cooled through 650–400 °C. Upon graduating, he worked with a team of meteorite researchers led by Lou Walter at Goddard Space Flight Center where for 4 years he attempted to understand metallographic structures by reproducing them in the laboratory. Preferring an academic environment, Joe accepted a faculty position in the rapidly expanding metallurgy department at Lehigh University where he was responsible for their new electron microprobe. He soon became involved in studying the metal from lunar soils and identifying the metallic component from its characteristic iron and nickel compositions. Over the next two decades he refined these studies of Ni diffusion in iron meteorites, particularly the effect of phosphorus in the process, which resulted in superior Fe‐Ni‐P phase diagrams and improved cooling rates for the iron meteorites. After a period as vice president for research at Lehigh, in 1993 he moved to the University of Massachusetts to serve as dean of engineering, but during these administrative appointments Joe produced a steady stream of scientific results. Joe has served as Councilor, Treasurer, Vice President, and President of the Meteoritical Society. He received the Leonard Medal in 2005, the Sorby Award in 1999, and the Dumcumb Award for in 2008.
2.
Derek W. G. SEARS 《Meteoritics & planetary science》2013,48(4):700-711
Abstract– In this interview, Dale Cruikshank ( Fig. 1 ) explains how as an undergraduate at Iowa State University he was a summer student at Yerkes Observatory where he assisted Gerard Kuiper in work on his Photographic Lunar Atlas. Upon completing his degree, Dale went to graduate school at the University of Arizona with Kuiper where he worked on the IR spectroscopy of the lunar surface. After an eventful 1968 trip to Moscow via Prague, during which the Soviets invaded Czechoslovakia, Dale assumed a postdoc position with Vasili Moroz at the Sternberg Astronomical Institute and more observational IR astronomy. Upon returning to the United States and after a year at Arizona, Dale assumed a position at the University of Hawai’i that he held for 17 years. During this period Dale worked with others on thermal infrared determinations of the albedos of small bodies beyond the asteroid Main Belt, leading to the recognition that low‐albedo material is prevalent in the outer solar system that made the first report of complex organic solids on a planetary body (Saturn’s satellite Iapetus). After moving to Ames Research Center, where he works currently, he continued this work and became involved in many outer solar system missions. Dale has served the community through his involvement in developing national policies for science‐driven planetary exploration, being chair of the DPS 1990–1991 and secretary/treasurer for 1982–1985. He served as president of Commission 16 (Physics of Planets) of the IAU (2001–2003). He received the Kuiper prize in 2006.
3.
Derek W. G. SEARS 《Meteoritics & planetary science》2012,47(3):434-448
Abstract– In this interview, Grenville Turner ( Fig. 1 ) recounts how he became interested in meteorites during postdoctoral research with John Reynolds at the University of California, Berkeley, after completing a DPhil with Ken Mayne at the University of Oxford. At Berkeley, he worked on xenon isotopes with fellow students Bob Pepin and Craig Merrihue, but Reynolds’ insistence that they analyze all the inert gases in their samples meant that they also made important contributions to Ne isotope studies and potassium‐argon dating leading to the Ar‐Ar technique. In 1964, Grenville obtained a teaching position at the University of Sheffield where he developed his own laboratory for inert gas isotope measurements. After the return of samples from the Moon by the Apollo program, he became involved in determining the chronology of volcanism and major impacts on the Moon. In 1988, Grenville and his team moved to the University of Manchester as part of a national reorganization of earth science departments. During the post Apollo years, Grenville’s interest turned to the development of new instrumentation (resonance ionization mass spectrometry and the ion microprobe), and to problems in terrestrial isotope geochemistry, particularly the source of inert gases in fluid inclusions. He received the Leonard Medal of the Meteoritical Society in 1999, and he has also received awards from the Royal Society, the European Association of Geochemistry, and the Royal Astronomical Society.
4.
Derek W. G. Sears 《Meteoritics & planetary science》2013,48(9):1715-1732
In this interview, Donald Burnett (Fig. 1) describes how he applied to the University of Chicago, with considerable support from his father, where he took classes from Harold Urey and was inspired by Ed Anders to pursue a career in nuclear chemistry and, later, cosmochemistry. As a graduate student at the University of California at Berkeley, Don learned to use charged‐particle tracks as a detector for radioactive nuclei, a technique that he applied to a wide variety of problems over the next 20 years, including the neutron profile probe that was deployed on the Moon. After a one‐year postdoc with William Fowler at the California Institute of Technology, he became involved with Jerry Wasserburg, who ultimately obtained a faculty position for him in the Geology Division. Since then, Don has worked on a number of fundamental problems in cosmochemistry, chronology of the solar system, the initial Pu/U abundance, fractionation of U and Pu in igneous processes, and elemental abundances. This last interest led him to advocate, propose, and lead the Genesis space mission to collect and return samples of the solar wind. The crash of the return capsule caused alarm, but some aspects of the mission were unaffected and others have been successfully handled, so that several major new results have been published: the lack of an SEP component in lunar samples, the Ne and Ar composition of the solar wind, and, most importantly, the oxygen and nitrogen isotopic composition of the Sun. Don received the Leonard Medal in 2012. 相似文献
5.
Derek W. G. SEARS 《Meteoritics & planetary science》2012,47(12):1891-1906
Abstract– Klaus Keil ( Fig. 1 ) grew up in Jena and became interested in meteorites as a student of Fritz Heide. His research for his Dr. rer. nat. became known to Hans Suess who––with some difficulty––arranged for him to move to La Jolla, via Mainz, 6 months before the borders of East Germany were closed. In La Jolla, Klaus became familiar with the electron microprobe, which has remained a central tool in his research and, with Kurt Fredriksson, he confirmed the existence of Urey and Craig’s chemical H and L chondrite groups, and added a third group, the LL chondrites. Klaus then moved to NASA Ames where he established a microprobe laboratory, published his definitive paper on enstatite chondrites, and led in the development of the Si(Li) detector and the EDS method of analysis. After 5 years at Ames, Klaus became director of the Institute of Meteoritics at the University of New Mexico where he built up one of the leading meteorite research groups while working on a wide variety of projects, including chondrite groups, chondrules, differentiated meteorites, lunar samples, and Hawai’ian basalts. The basalt studies led to a love of Hawai’i and a move to the University of Hawai’i in 1990, where he has continued a wide variety of meteorite projects, notably the role of volcanism on asteroids. Klaus Keil has received honorary doctorates from Friedrich‐Schiller University, Jena, and the University of New Mexico, Albuquerque. He was President of the Meteoritical Society in 1969–1970 and was awarded the Leonard Medal in 1988.
6.
Derek W. G. Sears 《Meteoritics & planetary science》2013,48(9):1733-1751
In this interview, Dieter Stöffler (Fig. 1) describes how his interest in meteorites and impact craters dates from his Ph.D. studies at the University of Tübingen when it was learned that the Ries crater was formed by impact. A paper by Dieter's advisor, Wolf von Engelhardt, also triggered an interest in meteorites. After graduation, Dieter helped to establish a laboratory for high pressure mineralogy and he examined rocks from the Ries crater, which led to the concept of progressive shock metamorphism. The group also worked on newly returned Apollo samples and guided astronauts over the crater. A year at the NASA Ames Research Center taught Dieter about experimental impact research with a light‐gas gun. After a few more years at Tübingen, Dieter obtained a professorship at the University of Münster where he created the Institute of Planetology, got involved in planning space missions including comet sample return, and continued high pressure mineralogy in collaboration with colleagues in Freiburg. Through several decades of research, Dieter and colleagues have documented the effects of shock on all the major rock‐forming minerals and devised widely accepted schemes for the classification of shocked rocks. After the unification of Germany, Dieter became Director of the Natural History Museum in Berlin, during which he made much progress rebuilding the laboratories and the collections. Dieter also helped to create a museum and research center in the Ries crater. He received the Barringer Award of the Meteoritical Society in 1994 and several prestigious awards in Germany. 相似文献
7.
8.
《Meteoritics & planetary science》2000,35(6):1125-1125
9.
10.
11.
12.
13.
Derek W. G. Sears 《Meteoritics & planetary science》2014,49(4):706-721
In this interview, John Wasson (Fig. 1 ) describes his childhood and undergraduate years in Arkansas and his desire to pursue nuclear chemistry as a graduate student at MIT. Upon graduation, John spent time in Munich (Technische Hochschule), the Air Force Labs in Cambridge, MA, and a sabbatical at the University of Bern where he developed his interests in meteorites. Upon obtaining his faculty position at UCLA, John established a neutron activation laboratory and began a long series of projects on the bulk compositions of iron meteorites and chondrites. He developed the chemical classification scheme for iron meteorites, gathered a huge set of iron meteorite compositional data with resultant insights into their formation, and documented the refractory and moderately volatile element trends that characterize the chondrites and chondrules. He also spent several years studying field relations and compositions of layered tektites from Southeast Asia, proposing an origin by radiant heating from a mega‐Tunguska explosion. Recently, John has explored oxygen isotope patterns in meteorites and their constituents believing the oxygen isotope results to be some of the most important discoveries in cosmochemistry. John also describes the role of postdoctoral colleagues and their important work, his efforts in the reorganization and modernization of the Meteoritical Society, his contributions in reshaping the journal Meteoritics, and how, with UCLA colleagues, he organized two meetings of the society. John Wasson earned the Leonard Medal of the Meteoritical Society in 1992 and the J. Lawrence Smith Medal of the National Academy in 2003.
-
- DS
-
- John, thank you for letting me document your oral history. Let us start with my normal opening question, how did you get interested in meteorites?
-
- JW
-
- My Ph.D. research was in nuclear chemistry at MIT. Until late in my studies I thought I could be a nuclear chemist using the classical scientific method. That is, you gather data on a topic that seems interesting, you look for patterns in the data, and you write an interpretative paper that explains the data. I had learned, though, by going to Gordon Conferences, that this was not the way nuclear chemistry was being done. Nuclear chemists measured gamma ray energies as accurately as they could, they tried to fit these into energy levels diagrams, and then the nuclear physicists took over and interpreted the data. The nuclear physicists looked for the patterns in the energy‐level diagrams and made the models. That was not what I had in mind. But while I was at MIT, I heard lectures by Harold Urey, Hans Suess, and James Arnold. These were people whose backgrounds were not that different from mine and all three extolled the virtues of working on meteorites, and how you could learn neat things about how the solar system worked. That's a strength of MIT, exposure to neat ideas, and I credit the institution for doing this. So that was it. I was hooked.
-
- DS
-
- You have talked to us about how you became interested in meteorites, let's go back and talk about your precollege years.
14.
15.
With this addendum we provide some correction and additional information regarding the above cited publication. It addresses the following two topics. (1) Clarification for a correct application of the criteria for certain shock stages of chondrites, in particular stage C‐S6. (2) Correction of a printing error in the table that contains the shock classification system of chondrites. 相似文献
16.
Adam A. Garde Anders Scherstén Iain McDonald Nynke Keulen 《Meteoritics & planetary science》2014,49(12):2129-2132
17.
Grenville Turner 《Meteoritics & planetary science》2001,36(1):183-184
18.
19.