首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– Donald D. Bogard (Don, Fig. 1 ) became interested in meteorites after seeing the Fayetteville meteorite in an undergraduate astronomy class at the University of Arkansas. During his graduate studies with Paul Kuroda at Arkansas, Don helped discover the Xe decay products of 244Pu. After a postdoctoral period at Caltech, where he learned much from Jerry Wasserburg, Peter Eberhardt, Don Burnett, and Sam Epstein, Don became one of a number of young Ph.D. scientists hired by NASA’s Manned Spacecraft Center to set up the Lunar Receiving Laboratory (LRL) and to perform a preliminary examination of Apollo samples. In collaboration with Oliver Schaeffer (SUNY), Joseph Zähringer (Max Planck, Heidelberg), and Raymond Davis (Brookhaven National Laboratory), he built a gas analysis laboratory at JSC, and the noble gas portion of this laboratory remained operational until he retired in 2010. At NASA, Don worked on the lunar regolith, performed pioneering work on cosmic ray produced noble gas isotopes and Ar‐Ar dating, the latter for important insights into the thermal and shock history of meteorites and lunar samples. During this work, he discovered that the trapped gases in SNC meteorites were very similar to those of the Martian atmosphere and thus established their Martian origin. Among Don’s many administrative accomplishments are helping to establish the Antarctic meteorite and cosmic dust processing programs at JSC and serving as a NASA‐HQ discipline scientist, where he advanced peer review and helped create new programs. Don is a recipient of NASA’s Scientific Achievement and Exceptional Service Medals and the Meteoritical Society’s Leonard Medal.
Figure 1 Open in figure viewer PowerPoint Donald Bogard.  相似文献   

2.
Abstract– Klaus Keil ( Fig. 1 ) grew up in Jena and became interested in meteorites as a student of Fritz Heide. His research for his Dr. rer. nat. became known to Hans Suess who––with some difficulty––arranged for him to move to La Jolla, via Mainz, 6 months before the borders of East Germany were closed. In La Jolla, Klaus became familiar with the electron microprobe, which has remained a central tool in his research and, with Kurt Fredriksson, he confirmed the existence of Urey and Craig’s chemical H and L chondrite groups, and added a third group, the LL chondrites. Klaus then moved to NASA Ames where he established a microprobe laboratory, published his definitive paper on enstatite chondrites, and led in the development of the Si(Li) detector and the EDS method of analysis. After 5 years at Ames, Klaus became director of the Institute of Meteoritics at the University of New Mexico where he built up one of the leading meteorite research groups while working on a wide variety of projects, including chondrite groups, chondrules, differentiated meteorites, lunar samples, and Hawai’ian basalts. The basalt studies led to a love of Hawai’i and a move to the University of Hawai’i in 1990, where he has continued a wide variety of meteorite projects, notably the role of volcanism on asteroids. Klaus Keil has received honorary doctorates from Friedrich‐Schiller University, Jena, and the University of New Mexico, Albuquerque. He was President of the Meteoritical Society in 1969–1970 and was awarded the Leonard Medal in 1988.
Figure 1 Open in figure viewer PowerPoint Klaus Keil at the University of Hawai’i at Manoa, 2007.  相似文献   

3.
In this interview, John Wasson (Fig.  1 ) describes his childhood and undergraduate years in Arkansas and his desire to pursue nuclear chemistry as a graduate student at MIT. Upon graduation, John spent time in Munich (Technische Hochschule), the Air Force Labs in Cambridge, MA, and a sabbatical at the University of Bern where he developed his interests in meteorites. Upon obtaining his faculty position at UCLA, John established a neutron activation laboratory and began a long series of projects on the bulk compositions of iron meteorites and chondrites. He developed the chemical classification scheme for iron meteorites, gathered a huge set of iron meteorite compositional data with resultant insights into their formation, and documented the refractory and moderately volatile element trends that characterize the chondrites and chondrules. He also spent several years studying field relations and compositions of layered tektites from Southeast Asia, proposing an origin by radiant heating from a mega‐Tunguska explosion. Recently, John has explored oxygen isotope patterns in meteorites and their constituents believing the oxygen isotope results to be some of the most important discoveries in cosmochemistry. John also describes the role of postdoctoral colleagues and their important work, his efforts in the reorganization and modernization of the Meteoritical Society, his contributions in reshaping the journal Meteoritics, and how, with UCLA colleagues, he organized two meetings of the society. John Wasson earned the Leonard Medal of the Meteoritical Society in 1992 and the J. Lawrence Smith Medal of the National Academy in 2003.
Figure 1 Open in figure viewer PowerPoint John T. Wasson.
  • DS
  • John, thank you for letting me document your oral history. Let us start with my normal opening question, how did you get interested in meteorites?
  • JW
  • My Ph.D. research was in nuclear chemistry at MIT. Until late in my studies I thought I could be a nuclear chemist using the classical scientific method. That is, you gather data on a topic that seems interesting, you look for patterns in the data, and you write an interpretative paper that explains the data. I had learned, though, by going to Gordon Conferences, that this was not the way nuclear chemistry was being done. Nuclear chemists measured gamma ray energies as accurately as they could, they tried to fit these into energy levels diagrams, and then the nuclear physicists took over and interpreted the data. The nuclear physicists looked for the patterns in the energy‐level diagrams and made the models. That was not what I had in mind. But while I was at MIT, I heard lectures by Harold Urey, Hans Suess, and James Arnold. These were people whose backgrounds were not that different from mine and all three extolled the virtues of working on meteorites, and how you could learn neat things about how the solar system worked. That's a strength of MIT, exposure to neat ideas, and I credit the institution for doing this. So that was it. I was hooked.
  • DS
  • You have talked to us about how you became interested in meteorites, let's go back and talk about your precollege years.
  •   相似文献   

    4.
    Abstract– In this interview, Grenville Turner ( Fig. 1 ) recounts how he became interested in meteorites during postdoctoral research with John Reynolds at the University of California, Berkeley, after completing a DPhil with Ken Mayne at the University of Oxford. At Berkeley, he worked on xenon isotopes with fellow students Bob Pepin and Craig Merrihue, but Reynolds’ insistence that they analyze all the inert gases in their samples meant that they also made important contributions to Ne isotope studies and potassium‐argon dating leading to the Ar‐Ar technique. In 1964, Grenville obtained a teaching position at the University of Sheffield where he developed his own laboratory for inert gas isotope measurements. After the return of samples from the Moon by the Apollo program, he became involved in determining the chronology of volcanism and major impacts on the Moon. In 1988, Grenville and his team moved to the University of Manchester as part of a national reorganization of earth science departments. During the post Apollo years, Grenville’s interest turned to the development of new instrumentation (resonance ionization mass spectrometry and the ion microprobe), and to problems in terrestrial isotope geochemistry, particularly the source of inert gases in fluid inclusions. He received the Leonard Medal of the Meteoritical Society in 1999, and he has also received awards from the Royal Society, the European Association of Geochemistry, and the Royal Astronomical Society.
    Figure 1 Open in figure viewer PowerPoint Grenville Turner.  相似文献   

    5.
    Abstract– In this interview, Joseph Goldstein ( Fig. 1 ) recounts how he became interested in meteorites during his graduate studies working with Robert Ogilvie at MIT. By matching the Ni profiles observed across taenite fields in the Widmanstätten structure of iron meteorites with profiles he computed numerically he was able to determine cooling rates as the meteorites cooled through 650–400 °C. Upon graduating, he worked with a team of meteorite researchers led by Lou Walter at Goddard Space Flight Center where for 4 years he attempted to understand metallographic structures by reproducing them in the laboratory. Preferring an academic environment, Joe accepted a faculty position in the rapidly expanding metallurgy department at Lehigh University where he was responsible for their new electron microprobe. He soon became involved in studying the metal from lunar soils and identifying the metallic component from its characteristic iron and nickel compositions. Over the next two decades he refined these studies of Ni diffusion in iron meteorites, particularly the effect of phosphorus in the process, which resulted in superior Fe‐Ni‐P phase diagrams and improved cooling rates for the iron meteorites. After a period as vice president for research at Lehigh, in 1993 he moved to the University of Massachusetts to serve as dean of engineering, but during these administrative appointments Joe produced a steady stream of scientific results. Joe has served as Councilor, Treasurer, Vice President, and President of the Meteoritical Society. He received the Leonard Medal in 2005, the Sorby Award in 1999, and the Dumcumb Award for in 2008.
    Figure 1 Open in figure viewer PowerPoint Joseph Goldstein.  相似文献   

    6.
    The electrical conductivities of several samples from returned Apollo 11 and 12 lunar rocks and from chondritic meteorites were measured from 300 to 1100K. Collectively the lunar samples represent all three of the major NASA classifications of lunar surface rocks. Of general interest is the observation that the conductivities of the lunar samples are much larger than the values which have previously been used in theoretical discussions of lunar phenomena. It is also found that the conductivity at 300K, (300), is extremely sensitive to the thermal history of the sample for both lunar and meteoritic material. Magnetic measurements are presented to help characterize the changes which occur upon heating.Principal Investigator - Apollo Lunar Science Program, Geophysics Research Laboratory, University of Tokyo, Japan.  相似文献   

    7.
    Abstract– Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 × 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km?2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact‐melt breccia). Among the meteorites, the range of compositions is large: 9–32% Al2O3, 2.5–21.1% FeO, 0.3–38 μg g?1 Sm, and <1 to 22.5 ng g?1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.  相似文献   

    8.
    Moonquakes and lunar tectonism   总被引:1,自引:0,他引:1  
    With the succesful installation of a geophysical station at Hadley Rille, on July 31, 1971, on the Apollo 15 mission, and the continued operation of stations 12 and 14 approximately 1100 km SW, the Apollo program for the first time achieved a network of seismic stations on the lunar surface. A network of at least three stations is essential for the location of natural events on the Moon. Thus, the establishment of this network was one of the most important milestones in the geophysical exploration of the Moon. The major discoveries that have resulted to date from the analysis of seismic data from this network can be summarized as follows:
    1. Lunar seismic signals differ greatly from typical terrestrial seismic signals. It now appears that this can be explained almost entirely by the presence of a thin dry, heterogeneous layer which blankets the Moon to a probable depth of few km with a maximum possible depth of about 20 km. Seismic waves are highly scattered in this zone. Seismic wave propagation within the lunar interior, below the scattering zone, is highly efficient. As a result, it is probable that meteoroid impact signals are being received from the entire lunar surface.
    2. The Moon possesses a crust and a mantle, at least in the region of the Apollo 12 and 14 stations. The thickness of the crust is between 55 and 70 km and may consist of two layers. The contrast in elastic properties of the rocks which comprise these major structural units is at least as great as that which exists between the crust and mantle of the earth. (See Toks?zet al., p. 490, for further discussion of seismic evidence of a lunar crust.)
    3. Natural lunar events detected by the Apollo seismic network are moonquakes and meteoroid impacts. The average rate of release of seismic energy from moonquakes is far below that of the Earth. Although present data do not permit a completely unambiguous interpretation, the best solution obtainable places the most active moonquake focus at a depth of 800 km; slightly deeper than any known earthquake. These moonquakes occur in monthly cycles; triggered by lunar tides. There are at least 10 zones within which the repeating moonquakes originate.
    4. In addition to the repeating moonquakes, moonquake ‘swarms’ have been discovered. During periods of swarm activity, events may occur as frequently as one event every two hours over intervals lasting several days. The source of these swarms is unknown at present. The occurrence of moonquake swarms also appears to be related to lunar tides; although, it is too soon to be certain of this point.
    These findings have been discussed in eight previous papers (Lathamet al., 1969, 1970, 1971) The instrument has been described by Lathamet al. (1969) and Sutton and Latham (1964). The locations of the seismic stations are shown in Figure 1.  相似文献   

    9.
    Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth’s magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967–1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.  相似文献   

    10.
    In this interview, William Hartmann (Bill, Fig.  1 ) describes how he was inspired as a teenager by a map of the Moon in an encyclopedia and by the paintings by Chesley Bonestell. Through the amateur journal “Strolling Astronomer,” he shared his interests with other teenagers who became lifelong colleagues. At college, he participated in Project Moonwatch, observing early artificial satellites. In graduate school, under Gerard Kuiper, Bill discovered Mare Orientale and other large concentric lunar basin structures. In the 1960s and 1970s, he used crater densities to study surface ages and erosive/depositional effects, predicted the approximately 3.6 Gyr ages of the lunar maria before the Apollo samples, discovered the intense pre‐mare lunar bombardment, deduced the youthful Martian volcanism as part of the Mariner 9 team, and proposed (with Don Davis) the giant impact model for lunar origin. In 1972, he helped found (what is now) the Planetary Science Institute. From the late 1970s to early 1990s, Bill worked mostly with Dale Cruikshank and Dave Tholen at Mauna Kea Observatory, helping to break down the Victorian paradigm that separated comets and asteroids, and determining the approximately 4% albedo of comet nuclei. Most recently, Bill has worked with the imaging teams for several additional Mars missions. He has written three college textbooks and, since the 1970s, after painting illustrations for his textbooks, has devoted part of his time to painting, having had several exhibitions. He has also published two novels. Bill Hartmann won the 2010 Barringer Award for impact studies and the first Carl Sagan Award for outreach in 1997.
    Figure 1 Open in figure viewer PowerPoint William K. Hartmann taken 2010 Aug 2 (Photo: Gayle Hartmann).
  • DS
  • Bill thank you very much for doing this. I would like to start with a very general question. What is the one incident in your life above all others that has determined the nature of your career?
  • WKH
  • I would say that what initially stirred my excitement for this topic were the books I stumbled across as a teenager. One event I recall was that my brother, who was 8 years older than I was, had a young person's encyclopedia called the Book of Knowledge. One day I was looking at that book and there was this map of the Moon. Craters, mountains, plains, all sorts of features. That blew me away. The concept that there was this other land, not just a shining thing in the sky, but a geological body, a new geographical place. There was also a book by Willy Ley and Chesley Bonestell, Conquest of Space, which had all these marvelous paintings by Bonestell, visualizing what it was like on other planets. It came out in 1949. I am fond of my copy of that book because my father somehow managed to get Willy Ley, a German expatriate colleague of von Braun's, a writer and popularizer for space, to come to our town and give a talk and autograph my book. Many years later I met Chesley Bonestell and got him to autograph the book. There are not very many copies of that book with the signatures of both authors! The paintings gave me a real desire to want to know what it would be like on other worlds.
  •   相似文献   

    11.
    Observations of the lunar surface with the orbiting Apollo Alpha Particle Spectrometer during the Apollo 15 and Apollo 16 missions have shown spatial and temporal variations in radon emission. There are a number of well localized features in the spatial distribution of lunar222Rn and her daughter210Po which apparently correlate with sites of reported transient visual events. There are sources at Aristarchus, Grimaldi and possibly Tsiolkovsky. Activity of210Po shows enhancement at most maria edges at rates far in excess of222Rn activity. This demonstrates unequivocally the presence of time varying radon activity at the maria edges, taking place at the present time. The increased radon emission is probably caused by sporadic internal activity. In analogy to terrestial processes, radon may be merely a trace component accompanying the release of larger quantities of more common gases to the lunar surface.  相似文献   

    12.
    This paper presents a computer investigation extending to the case of parabolic orbits, an earlier investigation conducted by Barricelli and Metcalfe (1969) on lunar impacts by external low eccentricity satellites as a means to interpret the asymmetric distribution of lunar maria. Parabolic orbits can be approximated by two kinds of objects:
    1. High eccentricity external satellites may, near periapsis, approach the Moon with orbital velocity and other characteristics closely resembling those of a parabolic orbit.
    2. Asteroids and meteoroids approaching the Earth-Moon system with a low velocity may have moved in a nearly parabolic orbit when they reached the lunar distance from the Earth at the time when the impacts which carved the lunar maria took place.
    The investigation gives, therefore, not only additional information relevant to the interpretation of the distribution of lunar maria by the satellite impacts hypothesis (in this case high eccentricity ones), but also information about the alternative hypothesis (Wood, 1973) that asteroid impacts rather than satellite impacts were involved.  相似文献   

    13.
    Cosmic ray exposure ages of lunar samples have been used to date surface features related to impact cratering and downslope movement of material. Only when multiple samples related to a feature have the same rare gas exposure age, or when a single sample has the same81Kr-Kr and track exposure age can a feature be considered reliably dated. Because any single lunar sample is likely to have had a complex exposure history, assignment of ages to features based upon only one determination by any method should be avoided. Based on the above criteria, there are only five well-dated lunar features: Cone Crater (Apollo 14) 26 m.y., North Ray Crater (Apollo 16) 50 m.y., South Ray Crater (Apollo 16) 2 m.y., the emplacement of the Station 6 boulders (Apollo 17) 22 m.y., and the emplacement of the Station 7 boulder (Apollo 17) 28 m.y. Other features are tentatively dated or have limits set on their ages: Bench Crater (Apollo 12) ?99 m.y., Baby Ray Crater (Apollo 16) ?2 m.y., Shorty Crater (Apollo 17) ≈ 30 m.y., Camelot Crater (Apollo 17) ?140 m.y., the emplacement of the Station 2 boulder 1 (Apollo 17) 45–55 m.y., and the slide which generated the light mantle (Apollo 17) ?50 m.y.  相似文献   

    14.
    Abstract— We have measured the natural and induced thermoluminescence (TL) of seven lunar meteorites in order to examine their crystallization, irradiation, and recent thermal histories. Lunar meteorites have induced TL properties similar to Apollo samples of the same provenance (highland or mare), indicating similar crystallization and metamorphic histories. MacAlpine Hills 88104/5 has experienced the greatest degree of impact/regolith processing among the highland-dominated meteorites. The basaltic breccia QUE 94281 is dominated by mare component but may also contain a significant highland component. For the mare-dominated meteorites, EET 87521 may have a significant highland impact-melt component, while Asuka 881757 and Y-793169 have been heavily shocked. The thermal history of Y-793169 included slow cooling, either during impact processing or during its initial crystallization. Our natural TL data indicate that most lunar meteorites have apparently been irradiated in space a few thousand years, with most <15,000 a. Elephant Moraine 87521 has the lowest irradiation exposure time, being <1,000 a. Either the natural TL of ALHA81005, Asuka 881757 and Y-82192 was only partially reset by lunar ejection or these meteorites were in small perihelia orbits (≤0.7 AU).  相似文献   

    15.
    Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (i) velocity increases from 100–300 m s–1 in the upper 100 m to 4 km s–1 at 5 km depth, (ii) a more gradual increase from 4 km s–1 to 6 km s–1 at 25 km depth, (iii) a discontinuity at a depth of 25 km and (iv) a constant value of 7 km s–1 at depths from 25 km to about 60 km. The exact details of the velocity variation in the upper 5 to 10 km of the Moon cannot yet be resolved but self-compression of rock powders cannot duplicate the observed magnitude of the velocity change and the steep velocity-depth gradient. Other textural or compositional changes must be important in the upper 5 km of the Moon. The only serious candidates for the lower lunar crust are anorthositic or gabbroic rocks.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

    16.
    We determined the form of the functional dependence of the rate of formation of tracks of galactic cosmic rays in meteorites (/t) on the shielding degree for ordinary chondrites with preatmospheric radius R > 5 cm based on published semiempirical data on /t. The resulting dependence was used to construct a nomogram which allowed us to estimate the ablation of a meteorite according to the average rate of track formation in it and its recovered mass. The calculated ablation of meteorites agrees with the estimates obtained by other methods. The average ablation for 83 ordinary chondrites was found to be equal to 78.4+3.1 –3.4%. The analysis of the data obtained demonstrated that the average preatmospheric mass of chondrites is M 90 kg, and for 95% of the meteorites, the preatmospheric masses fall in the interval 2–3500 kg, which corresponds to radii from 5 to 60 cm. It was found that meteorites with a small preatmospheric mass tend to higher ablation.  相似文献   

    17.
    Abstract– In this interview, Dale Cruikshank ( Fig. 1 ) explains how as an undergraduate at Iowa State University he was a summer student at Yerkes Observatory where he assisted Gerard Kuiper in work on his Photographic Lunar Atlas. Upon completing his degree, Dale went to graduate school at the University of Arizona with Kuiper where he worked on the IR spectroscopy of the lunar surface. After an eventful 1968 trip to Moscow via Prague, during which the Soviets invaded Czechoslovakia, Dale assumed a postdoc position with Vasili Moroz at the Sternberg Astronomical Institute and more observational IR astronomy. Upon returning to the United States and after a year at Arizona, Dale assumed a position at the University of Hawai’i that he held for 17 years. During this period Dale worked with others on thermal infrared determinations of the albedos of small bodies beyond the asteroid Main Belt, leading to the recognition that low‐albedo material is prevalent in the outer solar system that made the first report of complex organic solids on a planetary body (Saturn’s satellite Iapetus). After moving to Ames Research Center, where he works currently, he continued this work and became involved in many outer solar system missions. Dale has served the community through his involvement in developing national policies for science‐driven planetary exploration, being chair of the DPS 1990–1991 and secretary/treasurer for 1982–1985. He served as president of Commission 16 (Physics of Planets) of the IAU (2001–2003). He received the Kuiper prize in 2006.
    Figure 1 Open in figure viewer PowerPoint Dale P. Cruikshank.  相似文献   

    18.
    Analytical studies are reported here for two cosmogenic effects due to low energy particles in extraterrestrial samples:
    1. Formation of latent chemically etchable tracks in crystalline materials due to solid state damage as a result of ionisation losses suffered by multicharged cosmic ray nuclei, and
    2. Production of low threshold isotopes due to nuclear interactions of solar cosmic ray particles.
    The present analytical treatment is different from those previously reported and is more directly applicable to recent studies of low energy cosmogenic effects in meteorites and in lunar samples. We consider irradiation of ellipsoidal rocks in space and on the Moon. In the latter case, different irradiation geometries corresponding to different burials in the regolith are also considered. It is shown that results of irradiation of an object on the surface of a parent body differ from that of an object in free space in more complex manner than a uniform reduction by a factor of two due to the change over from 2π to 4π irradiation. Isocontours for ‘tracks’ or ‘isotopes’ are found to be markedly different in the two cases. Thus, the irradiation geometry must be explicitly taken into account in interpreting low-energy cosmogenic effects in lunar rocks. Simultaneous analyses of tracks and radioisotopes of different half-lives should allow one to establish principal irradiation geometries both for meteorites and lunar samples.  相似文献   

    19.
    One of the typical magnetic characteristics of lunar materials is the composition of their ferromagnetic constituent. Lunar breccias often contain kamacite (less than 7 weight per cent of Ni content) as well as almost pure metallic iron. Metallic ferromagnetics in most igneous rocks are almost pure iron, but the kamacite phase also has been found in some Apollo 15 igneous rocks. It seems likely therefore the metallic ferromagnetics in the lunar crust are more or less similar to those in chondrites.Another typical magnetic characteristic of lunar materials is the presence of a considerable amount of superparamagnetically fine particles of metallic iron. A higher relative content of such fine iron particles results in a higher value of the ratio of magnetic susceptibility (o) to saturation magnetization (I s), a smaller ratio of the coercive force (H c) to remanence coercive force (H RC), and an extremely higher ratio of the viscous component (I v) to the stable one (I s) of the remanent magnetization.Communication presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

    20.
    D.W. Sears 《Icarus》1980,44(1):190-206
    The observations of G. F. Komovsky [Meteoritika21 (1961), 64–69] and A. Liener and J. Geiss (in Thermoluminescence of Geological Materials, Academic Press, New York, 1968), that the thermoluminescence (TL) sensitivity of meteorites correlates with their KAr age, have been confirmed using a suite of 22 ordinary chondrites. In order to interpret this observation, meteorite samples have been exposed to doses of α, β and γ radiation comparable with those experienced over the lifetime of the meteorites and given a dose of protons comparable to the total dose received from cosmic rays. There was no increase in TL sensitivity after these treatments, suggesting that, contrary to the ideas of earlier workers, the TL mechanism does not involve radiation damage. The TL sensitivity of meteorites is therefore time independent. On the other hand, samples of meteorite annealed in a furnace at temperatures between 450 and 1250°C for 1 hr suffered up to an order-of-magnitude decrease in TL sensitivity. Similarly, samples of meteorite artificially shocked to pressures of the order of 400 kbar suffered a comparable decrease in TL sensitivity. It is concluded that the correlation between TL sensitivity and K-Ar age is entirely a result of the low K-Ar age meteorites being shocked or reheated. Data on the thermal and mechanical histories of these meteorites, based on 40Ar?39Ar, metallographic, and X-ray diffraction studies, seem to be consistent with this finding.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号