首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic flux ropes are created in the ionosphere of Venus and Mars during the interaction of the solar wind with their ionospheres and also at Titan during the interaction of the Saturnian magnetospheric plasma flow with Titan’s ionosphere. The flux ropes at Venus and Mars were extensively studied from Pioneer Venus Orbiter and Mars Global Surveyor observations respectively during solar maximum. Based on the statistical properties of the observed flux ropes at Venus and Mars, the formation of a flux rope in the ionosphere is thought first to arise near the boundary between the magnetic barrier and the ionosphere and later to sink into the lower ionosphere. Venus flux ropes are also observed during solar minimum by Venus Express and the observations of developing and mature flux ropes are consistent with the proposed mechanism. With the knowledge of flux rope structure in the Venus ionosphere, the twisted fields in the lower ionosphere of Titan from Cassini observations are studied and are found to resemble the Venus flux ropes.  相似文献   

2.
Spectra of Venus, Mars, and Jupiter between 45 and 115 μm have been obtained at a resolving power of ~10, observing from the NASA Lear Jet at an altitude of 13.7 km. The results are calibrated with lunar observations, and show Mars and Venus to have relatively constant brightness temperatures over this wavelength region, with Venus appearing somewhat warmer at longer wavelengths. The brightness temperature of Jupiter decreases slightly toward longer wavelengths.  相似文献   

3.
Submillimeter line observations of CO in the Venus middle atmosphere (mesosphere) were observed with the James Clerk Maxwell Telescope (JCMT, Mauna Kea) about the May 2000, February 2002 superior and July 1999, March 2001 inferior conjunctions of Venus. Combined 12CO and 13CO isotope spectral line measurements at 345 and 330 gHz frequencies, respectively, provided enhanced sensitivity and vertical coverage for simultaneous retrievals of atmospheric temperatures and CO mixing ratios over the altitude region 75-105 km with vertical resolution 4-5 km. Supporting millimeter 12CO spectral line observations with the Kitt Peak 12-m telescope (Steward Observatories) provide enhanced temporal coverage and CO mixing sensitivity. Implementation of CO/temperature profile retrievals for the 2000, 2002 dayside (superior conjunction) and 1999, 2001 nightside (inferior conjunction) periods yields a first-time definition of the vertical structure and diurnal variation of a low-to-mid-latitude mesopause within the Venus atmosphere. At the times of these 1999-2002 observations, the Venus mesopause was located at a slightly lower level in the nightside (0.5 mbar, ∼87 km) versus the dayside (0.2 mbar, ∼91 km) atmosphere. Average diurnal variation of Venus mesospheric temperatures appears to be ≤ 5 K at and below the mesopause. Diurnal variation of Venus thermospheric temperatures increases abruptly just above the mesopause, reaching 50 K by the 0.01-mbar pressure level (∼102 km). Atmospheric temperatures above and below the Venus mesopause exhibited global-scale (≥4000 km horizontal) variations of large amplitude (7-15 K) on surprisingly short timescales (daily to monthly) during the 2001 nightside and 2002 dayside observing periods. Venus dayside mesospheric temperatures observed during the 2002 superior conjunction were also 10-15 K warmer than observed during the 2000 superior conjunction. A characteristic timescale for these global temperature variations is not defined, but their magnitude is comparable to previous determinations of secular variability in nightside mesospheric temperatures (Clancy and Muhleman, 1991).  相似文献   

4.
The data obtained in space-borne measurements and the findings of turbulence theory show that turbulence, of both small and large scales, has a decisive influence on the structure and dynamics of the atmosphere of Venus. The small-scale turbulence generates anomalous convection, while large-scale turbulence induces the return spectral flux of energy that is the main element of the superrotation mechanism in the atmosphere. Ways for improving the general circulation model of the atmosphere of Venus are proposed.  相似文献   

5.
Classified as a terrestrial planet, Venus, Mars, and Earth are similar in several aspects such as bulk composition and density. Their atmospheres on the other hand have significant differences. Venus has the densest atmosphere, composed of CO2 mainly, with atmospheric pressure at the planet's surface 92 times that of the Earth, while Mars has the thinnest atmosphere, composed also essentially of CO2, with only several millibars of atmospheric surface pressure. In the past, both Mars and Venus could have possessed Earth-like climate permitting the presence of surface liquid water reservoirs. Impacts by asteroids and comets could have played a significant role in the evolution of the early atmospheres of the Earth, Mars, and Venus, not only by causing atmospheric erosion but also by delivering material and volatiles to the planets. Here we investigate the atmospheric loss and the delivery of volatiles for the three terrestrial planets using a parameterized model that takes into account the impact simulation results and the flux of impactors given in the literature. We show that the dimensions of the planets, the initial atmospheric surface pressures and the volatiles contents of the impactors are of high importance for the impact delivery and erosion, and that they might be responsible for the differences in the atmospheric evolution of Mars, Earth and Venus.  相似文献   

6.
At the end of August 2007, Venus, Earth and Ulysses were aligned within a few degrees. This unusual event gives the opportunity to attempt a coordinated study on the radial evolution of solar wind turbulence and coronal transients like CMEs between 0.7 and 1.4 AU. Interplanetary magnetic field data and moments of proton velocity distribution function such as density, speed and temperature are required for this programme and will be provided by ACE at Earth, Venus Express at Venus and Ulysses at 1.4 AU. This project has been recently proposed as a Coordinated Investigation Programme (CIP35) for the International Heliophysical Year.  相似文献   

7.
Planetary atmospheres are complex dynamical systems whose structure, composition, and dynamics intimately affect the propagation of sound. Thus, acoustic waves, being coupled directly to the medium, can effectively probe planetary environments. Here we show how the acoustic absorption and speed of sound in the atmospheres of Venus, Mars, Titan, and Earth (as predicted by a recent molecular acoustics model) mirror the different environments. Starting at the surface, where the sound speed ranges from ∼200 m/s for Titan to ∼410 m/s for Venus, the vertical sound speed profiles reveal differences in the atmospheres' thermal layering and composition. The absorption profiles are relatively smooth for Mars, Titan, and Earth while Venus stands out with a noticeable attenuation dip occurring between 40 and 100 km. We also simulate a descent module sampling the sound field produced by a low-frequency “event” near the surface noting the occurrence of acoustic quiet zones.  相似文献   

8.
We use high-resolution three-dimensional numerical models of aerodynamically disrupted asteroids to predict the characteristic properties of small impact craters on Venus. We map the mass and kinetic energy of the impactor passing though a plane near the surface for each simulation, and find that the typical result is that mass and energy sort themselves into one to several strongly peaked regions, which we interpret as more-or-less discrete fragments. The fragments are sufficiently well separated as to imply the formation of irregular or multiple craters that are quite similar to those found on Venus. We estimate the diameters of the resulting craters using a scaling law derived from the experiments of Schultz and Gault (1985, J. Geophys. Res. 90 (B5), 3701-3732) of dispersed impactors into targets. We compare the spacings and sizes of our estimated craters with measured diameters tabulated in a Venus crater database (Herrick and Phillips, 1994a, Icarus 111, 387-416; Herrick et al., 1997, in: Venus II, Univ. of Arizona Press, Tucson, AZ, pp. 1015-1046; Herrick, 2003, http://www.lpi.usra.edu/research/vc/vchome.html) and find quite satisfactory agreement, despite the uncertainty in our crater diameter estimates. The comparison of the observed crater characteristics with the numerical results is an after-the-fact test of our model, namely the fluid-dynamical treatment of large impacts, which the model appears to pass successfully.  相似文献   

9.
We speculate on the origin and physical properties of haze in the upper atmosphere of Venus. It is argued that at least four distinct types of particles may be present. The densest and lowest haze, normally seen by spacecraft, probably consists of a submicron sulfuric acid aerosol which extends above the cloud tops (at ~70 km) up to ~80 km; this haze represents an extension of the upper cloud deck. Measurements of the temperature structure between 70 and 120 km indicate that two independent water ice layers may occasionally appear. The lower one can form between 80 and 100 km and is probably the detached haze layer seen in high-contrast limb photography. This ice layer is likely to be nucleated on sulfuric acid aerosols, and is analogous to the nacreous (stratospheric) clouds on Earth. At the Venus “mesopause” near 120 km, temperatures are frequently cold enough to allow ice nucleation on meteoric dust or ambient ions. The resulting haze (which is analogous to noctilucent clouds on Earth) is expected to be extremely tenous, and optically invisible. On both Earth and Venus, meteoric dust is present throughout the upper atmosphere and probably has similar properties.  相似文献   

10.
Several arguments have been put forward suggesting that Venus has no place tectonics. We examine some of these arguments and suggest that because conditions on the surface of Venus are very different from those on Earth, the arguments should be reconsidered. We show that in the absence of an ocean, the differential hypsographic curve of Earth would probably have only one mode, like that for Venus. We show that the atmosphere of Venus is quite capable of erosion, provided that near-surface velocities are about 1 m · sec?1 or more, and that therefore the “oceanic” areas on Venus, should they exist, are probably covered with some thickness of sediment. If sedimentation on Venus is at all rapid, it is likely that subduction zones could be filled up and made unrecognizable topographically. Because Venus does not have an ocean, and because its surface temperature is much greater than that on Earth, ridge crests on Venus have a much smaller topographic expression than those on Earth. If significant sedimentation occurs they would be completely unrecognizable topographically.  相似文献   

11.
On Venus, present evidence indicates a crust of predominantly basaltic composition and a relatively young average age for the surface (several hundreds of millions of years). Estimates of crustal thickness from several approaches suggest an average crustal thickness of 10–20 km for much of the lowlands and rolling plains and a total volume of crust of about 1 × 1010 km3, approximately comparable to the present crustal volume of the Earth (1.02 × 1010 km3). The Earth's oceanic crust is thought to have been recycled at least 10–20 times over Earth history. The near-coincidence in present crustal volumes for the Earth and Venus suggests that either: (1) the presently observed crust of Venus represents the total volume that has accumulated over the history of the planet and that crustal production rates are thus very low, or (2) that crustal production rates are higher and that there is a large volume of missing crust unaccounted for on Venus which may have been lost by processes of crustal recycling.Known processes of crustal formation and thickening (impact-related magma ocean, vertical differentiation, and crustal spreading) are reviewed and are used as a guide to assess regional geologic evidence for the importance of these processes on Venus. Geologic evidence for variations in crustal thickness on Venus (range and frequency distribution of topography, regional slopes, etc.) are outlined. The hypothesis that the topography of Venus could result solely from crustal thickness variations is assessed and tested as an end-member hypothesis. A map of crustal thickness distribution is compiled on the basis of a simple model of Airy isostasy and global Venus topography. An assessment is then made of the significance of crustal thickness variations in explaining the topography of Venus. It is found that the distinctive unimodal hypsometric curve could be explained by: (1) a crust of relatively uniform thickness (most likely 10–20 km thick) comprising over 75% of the surface, (2) local plateaus (tessera) of thickened crust (about 20–30 km) forming less than 15% of the surface, (3) regions of apparent crustal thicknesses of 30–50 km (Beta, Ovda, Thetis, Atla Regiones and Western Ishtar Terra) forming less than 10% of the surface and showing some geologic evidence of crustal thickening processes (these areas can be explained on the basis of geologic observations and gravity data as combinations of thermal effects and crustal thickening), and (4) areas in which Airy isostasy predicts crustal thicknesses in excess of 50 km (the linear orogenic belts of Western Ishtar Terra, less than 1% of the surface).It is concluded that Venus hypsometry can be reasonably explained by a global crust of generally similar thickness with variations in topography being related to (1) crustal thickening processes (orogenic belts and plateau formation) and (2) local variations in the thermal structure (spatially varying thermal expansion in response to spatially varying heat flow). The most likely candidates for the formation and evolution of the crust are vertical differentiation and/or lateral crustal spreading processes. The small average crustal thickness (10–20 km) and the relatively small present crustal volume suggest that if vertical crustal growth processes are the dominant mechanism of crustal growth, than vertical growth has not commonly proceeded to the point where recycling by basal melting or density inversion will occur, and that therefore, rates of crustal production must have been much lower in the past than in recent history. Crustal spreading processes provide a mechanism for crustal formation and evolution that is consistent with observed crustal thicknesses. Crustal spreading processes would be characterized by higher (perhaps more Earth-like) crustal production rates than would characterize vertical differentiation processes, and crust created earlier in the history of Venus and not now observed (missing crust) would be accounted for by loss of crust through recycling processes. Lateral crustal spreading processes for the formation and evolution of the crust of Venus are interpreted to be consistent with many of the observations derived from presently available data. Resurfacing through vertical differentiation processes also clearly occurs, and if it is the major contributor to the total volume of the crust, then very low resurfacing rates are required.Although thermal effects on topography are clearly present and important on both Venus and the Earth, the major difference between the hypsometric curves on Earth (bimodal) and Venus (unimodal) is attributed primarily to the contrast in relative average thickness of the crust between the two terrains on Earth (continental/oceanic; 40/5 km = 35 km, 8:1) and Venus (upland plateaus/lowlands; about 30/15 km = 15 km, 2:1) (35 – 20 km = a difference of 20 km). The Venus unimodal distribution is thus attributed primarily to the large percentage of terrain with relatively uniform crustal thickness, with the skewness toward higher elevations due to the relatively small percentage of crust that is thickened by only about a factor of two. The Earth, in contrast, has a larger percentage of highlands (continents), whose crust is thicker by a factor of eight, on the average, leading to the distinctive bimodal hypsometric curve.Data necessary to firmly establish the dominant type of crustal formation and thickening processes operating and to determine the exact proportion of the topography of Venus that is due to thermal effects versus crustal thickness variations include: (1) global imaging data (to determine the age of the surface, the distribution and age of regions of high heat flux, and evidence for the nature and global distribution of processes of crustal formation and crustal loss), and (2) high resolution global gravity and topography data (to model crustal thickness variations and thermal contributions and to test various hypotheses of crustal growth).'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

12.
We present submillimeter observations of 12CO J=3-2 and 2-1, and 13CO J=2-1 lines of the Venusian mesosphere and lower thermosphere with the Heinrich Hertz Submillimeter Telescope (HHSMT) taken around the second MESSENGER flyby of Venus on 5 June 2007. The observations cover a range of Venus solar elongations with different fractional disk illuminations. Preliminary results like temperature and CO abundance profiles are presented.These data are part of a coordinated observational campaign in support of the ESA Venus Express mission. Furthermore, this study attempts to contribute to cross-calibrate space- and ground-based observations, to constrain radiative transfer and retrieval algorithms for planetary atmospheres, and to a more thorough understanding of the global patters of circulation of the Venusian atmosphere.  相似文献   

13.
Carl Bowin 《Icarus》1983,56(2):345-371
The gravity anomalies of Venus, although small by comparison with those on Mars and the Moon, are still much larger than those on Earth for large features. On Venus, even the low-degree spherical harmonic terms for Venus' gravity field indicate a close association of broad positive gravity anomalies with major topographic highs. This is striking contrast to the situation on Earth, where the broad regional gravity anomalies show little correlation with continental masses or plate tectonic features, but instead appear to be caused by deep mass anomalies.A method for estimating radial gravity anomalies from line-of-sight acceleration data, their interpolation, and use of iteration for improved radial anomaly estimates is outlined. A preliminary gravity anomaly map of Venus at spacecraft altitude prepared using first estimate values is presented. A profile across the western part of Aphrodite along longitude 85 E was analyzed using time-series techniques. An elastic plate model would require a plate thickness of about 180 to 200 km to match the general amplitude of the observed gravity anomaly (about 33 mgal): a thickness much greater than that found for earth structures and, because of high surface temperatures, unlikely for Venus. An Airy isostatic model convolved with the topography across Aphrodite, however, provides a better match between the predicted and observed gravity anomalies if the nominal crustal thickness is about 70 to 80 km. This thickness is over twice that for continental crust on the earth, and considerably greater than that of the earth's basaltic ocean crust (only 5 km). A different differentiation history for Venus than that of the earth thus is anticipated. High gravity anomalies (+110 mgal) occur over Beta Regio and over the topographic high in eastern Aphrodite; both highs are associated with regions where detected lightning is clustered, and thus the topographic features may be active volcanic constructs. The large gravity anomalies at these two sites of volcanic activity require an explanation different than that indicated for western Aphrodite.  相似文献   

14.
Atmospheric angular momentum variations of a planet are associated with the global atmospheric mass redistribution and the wind variability. The exchange of angular momentum between the fluid layers and the solid planet is the main cause for the variations of the planetary rotation at seasonal time scales. In the present study, we investigate the angular momentum variations of the Earth, Mars and Venus, using geodetic observations, output of state-of-the-art global circulation models as well as assimilated data. We discuss the similarities and differences in angular momentum variations, planetary rotation and angular momentum exchange for the three terrestrial planets. We show that the atmospheric angular momentum variations for Mars and Earth are mainly annual and semi-annual whereas they are expected to be “diurnal” on Venus. The wind terms have the largest contributions to the LOD changes of the Earth and Venus whereas the matter term is dominant on Mars due to the CO2 sublimation/condensation. The corresponding LOD variations (ΔLOD) have similar amplitudes on Mars and Earth but are much larger on Venus, though more difficult to observe.  相似文献   

15.
《Icarus》1986,68(2):284-312
Recent Pioneer Venus observations have prompted a return to comprehensive hydrodynamical modeling of the thermosphere of Venus. Our approach has been to reexamine the circulation and structure of the thermosphere using the framework of the R. E. Dickinson an E. C. Ridley (1977, Icarus 30, 163–178), symmetric two-dimensional model. Sensitivity tests were conducted to see how large-scale winds, eddy diffusion and conduction, and strong 15-μm cooling affect day-night contrasts of densities and temperatures. The calculated densities and temperatures are compared to symmetric empirical model fields constructed from the Pioneer Venus data base. We find that the observed day-to-night variation of composition and temperatures can be derived largely by a wave-drag parameterization that gives a circulation system weaker than predicted prior to Pioneer Venus. The calculated mesospheric winds are consistent with Earth-based observations near 115 km. Our studies also suggest that eddy diffusion is only a minor contributor to the maintenance of observed day and nightside densities, and that eddy coefficients are smaller than values used by previous one-dimensional composition models. The mixing that occurs in the Venus thermosphere results from small-scale and large-scale motions. Strong CO2 15-μm cooling buffers solar perturbation such that the response by the general circulation to solar cycle variation is relatively weak.  相似文献   

16.
《Planetary and Space Science》2007,55(12):1712-1728
The structure of the Venus atmosphere is discussed. The data obtained in the 1980s by the last Soviet missions to Venus: orbiters Venera 15, 16 and the entry probes and balloons of Vega 1 and 2 are compared with the Venus International Reference Atmosphere (VIRA) model. VIRA is based on the data of the extensive space investigations of Venus in the 1960s and 1970s. The results of the IR Fourier Spectrometry experiment on Venera 15 are reviewed in detail. This instrument is considered as a precursor of the long wavelength channel of the Planetary Fourier Spectrometer on Venus Express.  相似文献   

17.
Anthony Mallama 《Icarus》2009,204(1):11-499
The empirically derived phase curves of terrestrial planets strongly distinguish between airless Mercury, cloud-covered Venus, and the intermediate case of Mars. The function for Mercury is steeply peaked near phase angle zero due to powerful backscattering from its surface, while that for Venus has 100 times less contrast and exhibits a brightness excess near 170° due to Mie scattering from droplets in the atmosphere. The phase curve of Mars falls between those of Mercury and Venus, and there are variations in luminosity due to the planet’s rotation, seasons, and atmospheric states. The phase function and geometric albedo of the Earth are estimated from published albedos values. The curves for Mercury, Venus and Mars are compared to that of the Earth as well as theoretical phase functions for giant planets. The parameters of these different phase functions can be used to characterize exoplanets.  相似文献   

18.
Venus Express is the first European (ESA) mission to the planet Venus. Its main science goal is to carry out a global survey of the atmosphere, the plasma environment, and the surface of Venus from orbit. The payload consists of seven experiments. It includes a powerful suite of remote sensing imagers and spectrometers, instruments for in-situ investigation of the circumplanetary plasma and magnetic field, and a radio science experiment. The spacecraft, based on the Mars Express bus modified for the conditions at Venus, provides a versatile platform for nadir and limb observations as well as solar, stellar, and radio occultations. In April 2006 Venus Express was inserted in an elliptical polar orbit around Venus, with a pericentre height of ~250 km and apocentre distance of ~66000 km and an orbital period of 24 hours. The nominal mission lasted from June 4, 2006 till October 2, 2007, which corresponds to about two Venus sidereal days. Here we present an overview of the main results of the nominal mission, based on a set of papers recently published in Nature, Icarus, Planetary and Space Science, and Geophysical Research Letters.  相似文献   

19.
《Planetary and Space Science》2006,54(13-14):1336-1343
The Venus Express mission is scheduled for launch in 2005. Among many other instruments, it carries a magnetometer to investigate the Venus plasma environment. Although Venus has no intrinsic magnetic moment, magnetic field measurements are essential in studying the solar wind interaction with Venus. Our current understanding of the solar wind interaction with Venus is mainly from the long lasting Pioneer Venus Orbiter (PVO) observations. In this paper, we briefly describe the magnetic field experiment of the Venus Express mission. We compare Venus Express mission with PVO mission with respect to the solar wind interaction with Venus. Then we discuss what we will achieve with the upcoming Venus Express mission.  相似文献   

20.
《Planetary and Space Science》2007,55(12):1636-1652
Venus Express is the first European mission to planet Venus. The mission aims at a comprehensive investigation of Venus atmosphere and plasma environment and will address some important aspects of the surface physics from orbit. In particular, Venus Express will focus on the structure, composition, and dynamics of the Venus atmosphere, escape processes and interaction of the atmosphere with the solar wind and so to provide answers to the many questions that still remain unanswered in these fields. Venus Express will enable a breakthrough in Venus science after a long period of silence since the period of intense exploration in the 1970s and the 1980s.The payload consists of seven instruments. Five of them were inherited from the Mars Express and Rosetta projects while two instruments were designed and built specifically for Venus Express. The suite of spectrometers and imaging instruments, together with the radio-science experiment, and the plasma package make up an optimised payload well capable of addressing the mission goals to sufficient depth. Several of the instruments will make specific use of the spectral windows at infrared wavelengths in order to study the atmosphere in three dimensions. The spacecraft is based on the Mars Express design with minor modifications mainly needed to cope with the thermal environment around Venus, and so a very cost-effective mission has been realised in an exceptionally short time.The spacecraft was launched on 9 November 2005 from Baikonur, Kazakhstan, by a Russian Soyuz-Fregat launcher and arrived at Venus on 11 April 2006. Venus Express will carry out observations of the planet from a highly elliptic polar orbit with a 24-h period. In 3 Earth years (4 Venus sidereal days) of operations, it will return about 2 Tbit of scientific data.Telecommunications with the Earth is performed by the new ESA ground station in Cebreros, Spain, while a nearly identical ground station in New Norcia, Australia, supports the radio-science investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号