首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Single crystals of a rock magnetite were separated from steatite cobbles collected in a geological site near the city of Serro (18° 36′ 47′′ S 43° 22′ 46′′ W), Minas Gerais, Brazil. A typically well-shaped magnetite single crystal was characterized by chemical analysis, 57Fe Mössbauer spectrometry at 300, 77 and 4 K and under an applied magnetic field of 6 T at 10 K, magnetization measurements and electronic microprobe. From Mössbauer data, the sample is stoichiometric with a tetrahedral and octahedral site occupancy ratio of 1:2. Elemental chemical analysis and point-to-point electron microscope probing show some inclusions of lamellar ilmenite (≤ 1 mass%) randomly distributed throughout the magnetite matrix, and also that the magnetite matrix is constituted only by Fe2+ and Fe3+, with no isomorphic substitution. Results are discussed on the basis of the magnetization curve and of the temperature dependence of the AC magnetic susceptibility. The Verwey transition occurs in the temperature range of 100–115 K, observed by a sudden change in the temperature dependence of the magnetization.  相似文献   

2.
Magnetization curves and high-field Mössbauer spectra are used to deduce a model for the magnetic order in synthetic samples of δ-FeOOH (feroxyhyte), which takes account of the changes in magnetization when the samples are heated at 105 °C. Feroxyhyte is essentially a planar antiferromagnet with the net sublattice moments aligned parallel or antiparallel to c. Each particle acquires a net moment due to the very small number of layers along the c-direction, and the presence of surface steps causing the formation of ferrimagnetic domains with an odd number of layers. There is some spin canting which is related to the crystallinity of the sample. The decrease in magnetization following heating is mainly due to an increase in the extent of antiferromagnetic coupling between the closely packed ferrimagnetic particles, but changes in the spin canting within the bulk may also contribute. A typical, rather well crystallized specimen has magnetization σ=14 JT?1 kg?1 and Curie temperature T c=455 K.  相似文献   

3.
Major element analyses of nineteen Luna 20 glass particles indicate that most of the Luna 20 glasses have Al2O3 contents greater than 21 wt.% and compositions similar to Apollo 10 and Luna 20 rocks and soils. Three of the glass particles have low Al2O3 (< 13 wt.%) and high FeO (> 18 wt.%) contents and were probably derived from one of the adjacent maria. The low glass content of the Luna 20 soil indicates that it is relatively young or less mature than most mare soils that have been studied.  相似文献   

4.
A detailed paleomagnetic and rock-magnetic investigation spanning loess L7 to paleosol S8 has been carried out at the Baoji and Xifeng sections. Results of anisotropy of magnetic susceptibility confirm that the studied loess–paleosol sediments retain primary sedimentary fabrics. Stepwise thermal demagnetization shows that two well-defined magnetization components can be isolated from both loess and paleosol specimens. A low-temperature component, isolated between 100°C and 200°C, is consistent with the present geomagnetic field direction, and a high-temperature component, isolated between 200–300°C and 620–680°C, includes clearly normal and reversed polarities. Isothermal remanent magnetization and thermomagnetic analyses indicate that characteristic remanent magnetization is mainly carried by magnetite and hematite. The Day plot, together with the stratigraphic variations of rock-magnetic parameters, shows that the uniformity of magnetic mineralogy and grain size fulfills the criteria for relative paleointensity (RPI) studies. RPI records have been constructed using natural remanent magnetization (NRM) intensity after thermal demagnetization at 300°C normalized by low-frequency magnetic susceptibility (NRM300/χ). The results show that the RPI record from the Baoji section, where pedogenesis is quite weak, is compatible with the stacked PISO-1500 paleointensity record, suggesting that it might reflect the paleointensity variation of the geomagnetic field. The RPI record from the Xifeng section, where pedogenesis is rather strong, indicates a clear dissimilarity with the stacked PISO-1500 paleointensity record, implying that it does not reflect the paleointensity variation of the geomagnetic field. Our new results show that the NRM300/χ from the strongly pedogenetic paleosols does not completely eliminate the pedogenetic (climatic) influence, so it might be unsuitable for a reliable paleointensity study.  相似文献   

5.
Accurate estimates of global concentrations of Th, K, and FeO have an important bearing on understanding the bulk chemistry and geologic evolution of the Moon. We present empirical ground-truth calibrations (transformations) for Lunar Prospector gamma-ray spectrometer data (K and Th) and a modified algorithm for deriving FeO concentrations from Clementine spectral reflectance data that incorporates an adjustment for TiO2 content. The average composition of soil samples for individual landing sites is used as ground-truth for remotely sensed data. Among the Apollo and Luna sites, Apollo 12 and 14 provide controls for the incompatible-element-rich compositions, Apollo 16 and Luna 20 provide controls for the feldspathic and incompatible-element-poor compositions, and Apollo 11, 15, and 17, and Luna 16 and 24 provide controls for Fe-rich compositions. In addition to these Apollo and Luna sample data we include the composition of the feldspathic lunar meteorites as a proxy for the northern farside highlands to extend the range of the calibration points, thus providing an additional anorthositic end-member composition. These empirical ground-truth calibrations for Lunar Prospector Th and K provide self consistency between the existing derived data and lunar-sample data. Clementine spectral-reflectance data are used to construct a TiO2-sensitive FeO calibration that yields higher FeO concentrations in areas of high-Fe, low-Ti, mare-basalt-rich surfaces than previous FeO algorithms. The data set so derived is consistent with known sample compositions and regolith mixing relationships.  相似文献   

6.
Two natural clinopyroxene single crystals were investigated, an aegirine-augite (AEG) and a magnesian hedenbergite (HED). Both samples were carefully characterized by electron microprobe, X-ray diffraction, and Mössbauer spectroscopy. Magnetic susceptibility measurements of powdered samples reveal low temperature antiferromagnetic coupling and Curie-Weiss behaviour with T N =7.5(5)?K, Θ P =?19(1)?K for AEG, and T N =31(1)?K, Θ P =+21(1)?K for HED, respectively. Low temperature Mössbauer spectra exhibit relaxation phenomena. Magnetic susceptibility measurements of the single crystals show the direction of the magnetic moments to be lying within the a/c plane for both samples: 50(±2)° from a and 57(±2)° from c in AEG, and 45(±2)° from a and 60(±2)° from c in HED, respectively. The antiferromagnetic interchain interaction competes with the ferromagnetic intrachain interaction in both pyroxenes. In the magnesian hedenbergite a field induced magnetic transition is found. Its dependence on temperature, magnetic field and crystallographic direction is investigated and described.  相似文献   

7.
The low-temperature heat capacity of knorringite garnet (Mg3Cr2Si3O12) was measured between 2 and 300 K, and thermochemical functions were derived from the results. The measured heat capacity curves show a sharp lambda-shaped anomaly peaking at around 5.1 K. Magnetic susceptibility data show that the transition is caused by antiferromagnetic ordering. From the C p data, we suggest a standard entropy (298.15 K) of 301 ± 2.5 J mol?1 K?1 for Mg3Cr2Si3O12. The new data are also used in conjunction with previous experimental results to constrain ?H f ° for knorringite.  相似文献   

8.
The magnetic properties of two samples of acmite, one natural and the other synthetic, were determined using magnetization and susceptibility measurements, Mössbauer spectroscopy and neutron diffraction. Exchange interactions are quite strongly antiferromagnetic, the paramagnetic Curie temperature being -46 K for a purely ferric synthetic sample, but its Néel temperature is only 8 K. The principal magnetic mode has the periodicity of the crystallographic structure and is made of ferromagnetic chains, coupled antiferromagnetically. Moments are oriented in a direction close to the chain axis, c. The antiferromagnetic exchange between adjacent Fe3+ ions in the same chain is overcome by their coupling to a common Fe3+ neighbour in the next chain. This indicates that the whole (SiO4) group can act as a superexchange ligand in silicates.  相似文献   

9.
Wyomingite collected from Leucite Hills is composed mainly of leucite, diopside, phlogopite, and small amounts of apatite, calcite, magnetite and rare amphibole, and is characterized by very high content of potash. Thermal experiments at atmospheric pressure indicate that the liquidus phase is always diopside with liquidus temperature of 1320 °C, and solidus temperature is about 1000 °C. Various kinds of melt inclusions are abundant in all constituent minerals. They comprise mono-phase (glass only), two-phase (gas+glass), three-phase (gas+glass+one crystalline phase) and multi-phase (gas+glass+more than two crystalline phases) inclusions. Thermal experiments have been made on these inclusions in phlogopite, diopside, and leucite in order to estimate the temperature of crystallization by homogenizing these inclusions. The results show that the crystallization of wyomingite began with formation of phlogopite accompanied by diopside at 1270 °C. Although diopside ceased crystallization at 1220 °C recurrent crystallization of phlogopite was noticed between 1120 ° and 1040 °C. Leucite crystallized out abundantly between 1250 ° and 1150 °C. Complete solidification of wyomingite occurred at about 1000 °C.  相似文献   

10.
Magnetic properties of the Chelyabinsk meteorite: Preliminary results   总被引:1,自引:0,他引:1  
This paper presents the distribution of magnetic susceptibility, χ0, in fragments of the Chelyabinsk ordinary chondrite (LL5, S4, W0, fall of February 15, 2013) from the collection of the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, and results obtained by standard magnetic techniques for the meteorite material, including thermomagnetic analysis, measurements of natural remanent magnetization (NRM) and saturation isothermal remanent magnetization (SIRM), as well as the spectra of their alternating field demagnetization at amplitudes up to 170 mT, measurements of hysteresis loops and back-field remanence demagnetization curves at temperatures from 10 K to 700°C etc. The mean logχ0 values for the light-colored (main) lithology of the meteorite material and impact-melt breccia from our collection are 4.54 ± 0.10 (n = 66) and 4.65 ± 0.09 (n = 38) (×10?9 m3/kg), respectively. According to international magnetic classification of meteorites, Chelyabinsk falls within the range of LL5 chondrites. The mean metal content was estimated from the saturation magnetization, M s, of the light- and dark-colored lithologies as 3.7 and 4.1 wt %, respectively. Hence, the dark lithology is richer in metal. The metal grains are multidomain at room temperature and show low coercive force, B c (<2 mT) and remanent coercive force, B cr (15–23 mT). The thermomagnetic analyses of the samples showed that the magnetic properties of the Chelyabinsk meteorite are controlled mainly by taenite and kamacite at temperatures >75 K. In the temperature range below 75 K, magnetic properties are controlled by chromite; the magnetic hardness of the samples is maximal at 10 K and equals to 606 and 157 mT for the light- and dark-colored lithologies, respectively.  相似文献   

11.
Susceptibility, magnetisation and Mössbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe2+-Fe2+ exchange interactions are ferromagnetic with y ~ 2 K, whereas Fe3+-Fe3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe2+ → Fe3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1–7 K. One biotite sample showed an antiferromagnetic transition at T N =7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite.  相似文献   

12.
A magnetic and spectroscopic characterisation has been performed on a natural bornite sample from the Natural History Museum of the University of Florence. The combination of magnetic measurements and continuous-wave electron paramagnetic resonance (cw-EPR) spectroscopy at different temperatures and frequencies provided information about the distribution and valence states of Cu and Fe in bornite. The studied sample was found to obey the Curie–Weiss law with a transition from a paramagnetic to an antiferromagnetic phase at 64 K; its possible attribution to a disordered spin glass phase was ruled out by ac susceptibility measurements. Q- and X-band cw-EPR measurements confirmed the presence of Fe(III) as fundamental valence state in bornite: the single EPR line registered in the temperature range from 300 to 65 K can be assigned, in fact, to the Fe(III) single ions. Some Cu(II) signals were revealed in the low temperature EPR spectra and attributed to an early stage of the surface alteration. The width of the Fe(III) EPR spectrum, which hinders any characteristic spectral structure, can be ascribed to the exchange interaction. The pure antiferromagnetic character of the magnetic transition confirms the ordering between Fe and Cu in the bornite structure, at least at low temperature (≤70 K). Moreover, the relatively high Nèel temperature suggests the accepted model of Collins et al.’s (Can J Phys 59:535–539, 1981) to conveniently explain the overall magnetic properties in the range 298–4 K. Despite the increasing of the susceptibility in the paramagnetic range, in fact, the integrated EPR line area decreases by lowering the temperature, thus suggesting a progressive rising of the antiferromagnetic interactions among next-nearest-neighbouring paramagnetic centres.  相似文献   

13.
The structure of sodium tetrasilicate (Na2Si4O9) glass and melt was studied in the range from 300 to 950?K by neutron diffraction. Increasing temperature leads to gradual decrease of the peak intensities in the static structure factors possibly with a change in the slope at the glass transition temperature (T g?773?K), but no shift and broadening of the peaks is observed. Especially, the position of the first sharp diffraction peak (FSDP) at 1.6?Å–1 remains constant in the whole temperature range studied. The corresponding pair correlation functions g(r) are very similar at all temperatures. Only a slight broadening of the Si-O and O-O first nearest-neighbour peaks with temperature is observed, which can be attributed to temperature enhanced dynamic distortions of the SiO4 tetrahedra. All these results suggest that there is little change not only in the short- but also in the medium-range order of the sodium tetrasilicate glass and melt around the glass-liquid transition.  相似文献   

14.
 The speciation of water dissolved in glasses along the join NaAlSi3O8-KAlSi3O8 has been investigated using infrared spectroscopy. Hydrous melts have been hydrothermally synthesized by chemical equilibration of cylinders of bubble-free anhydrous start glasses with water at 1040° C and 2 kbar. These melts have been isobarically and rapidly (200° C/s) “drop”-quenched to room temperature and then subsequently depressurized. The speciation of water in the quenched glasses reflects the state of water speciation at a temperature (the so-called fictive temperature) where the quenched-in structure of the glasses closely corresponds to the melt structure at equilibrium. This fictive temperature is detectable as the macroscopically measureable glass transition temperature of these melt compositions. A separate set of experiments using vesicular samples of the same chemistry has precisely defined the glass transition temperature of these melts (±5° C) on the basis of homogenization temperatures for water-filled fluid inclusions (Romano et al. 1994). The spectroscopic data on the speciation of water in these quenched glasses has been quantified using experimentally determined absorptivities for OH and H2O for each individual melt composition. The knowledge of glass transition temperatures, together with quantitative speciation data permits an analysis of the temperature dependence of the water speciation over the 113° C range of fictive temperatures obtained for these water-saturated melts. The variation of water speciation, cast as the equilibrium constant K where K = [H2O] [O m ]/[OH]2 is plotted versus the fictive temperature of the melt to obtain the temperature dependence of speciation. Such a plot describes a single linear trend of the logarithm of the equilibrium constant versus reciprocal temperature, implying that the exchange of K for Na has little influence on melt speciation of water. The enthalpy derived from temperature dependence is 36.5(±5) kJ/mol. The results indicate a large variation in speciation with temperature and an insensitivity of the speciation to the K–Na exchange. Received: 8 March 1995/Accepted: 6 June 1995  相似文献   

15.
 Four smectites with different total Fe contents (two nontronites, one ferruginous smectite, and one montmorillonite) were reduced to obtain a range of Fe(II)/Fe(III) ratios and their magnetic properties measured with a SQUID (superconducting quantum interference device) as a function of applied magnetic field strength at 5 K and as a function of temperature in a field of 0.1 T. The unaltered nontronite and ferruginous smectite specimens showed antiferromagnetic coupling, whereas the coupling in the reduced samples was ferromagnetic; the paramagnetic Curie temperature increased with increasing Fe(II) content. Data collected after cooling samples in both the presence and absence of an external magnetic field of 0.1 T showed that at low temperatures the reduced (ferromagnetic) nontronite and ferruginous smectite samples exhibit a memory effect of previous magnetic field exposure consistent with superparamagnetic or spin glass behavior. The superparamagnetic/ferromagnetic transition temperature, T f , increased linearly with increasing Fe(II) content for each of the nontronites, but the relationship between T f and Fe(II) content differed for different clays, thus demonstrating that T f is sensitive to isomorphous substitutions in the clay structure. The montmorillonite was paramagnetic in both oxidized and reduced forms. Received: 23 March 1999 / Revised, accepted: 27 August 1999  相似文献   

16.
Individual metal particles from Luna 20 thin sections 521, 513 and 514 as well as several small metallic inclusions in silicate particles from Luna 20 thin sections 501 and 502 were examined using optical microscopy and the electron microprobe. All the metallic particles and inclusions analyzed are of meteoritic Co-Ni content as are most of the metallic particles from the Fra Mauro and the Apollo 16 highlands sites. It is proposed that most of the metal at these 3 sites had its origin in the meteoritic projectiles that bombarded and accumulated in the early lunar crust. It is apparent that the metallic particles and some of the metallic inclusions in the Luna 20 soil have been subjected to reheating on the Moon and this process has removed any evidence of the original meteoritic microstructure of the metal.  相似文献   

17.
Inclusions of troilite and metallic Fe,Ni 0.2–4 mm in size with a dendritic or cellular texture were observed in 12 ordinary chondrites. Cooling rates in the interval 1400?950°C calculated from the spacing of secondary dendrite arms or cell widths and published experimental data range from 10?7 to 104°C/sec. In 8 of these chondrites, which are breccias containing some normal slow-cooled metal grains, the inclusions solidified before they were incorporated into the breccias. Their cooling rates of 1–300 °C/sec indicate cooling by radiation, or by conduction in contact with cold silicate or hot silicate volumes only 6–40 mm in size. This is quantitative evidence that these inclusions and their associated clasts were melted on the surface of a parent body (by impact), and were not formed at depth from an internally derived melt. In Ramsdorf, Rose City and Shaw, which show extensive reheating to ? 1000°C, Fe-FeS textures in melted areas are coarser and indicate cooling rates of 10?1 to 10?4°C/sec during solidification. This metal may have solidified inside hot silicate volumes that were 10–300 cm in size. As Shaw and Rose City are breccias of unmelted and melted material, their melted metal did not necessarily cool through 1000°C within a few m of the surface. Shock-melted, fine-grained, irregular intergrowths of metal and troilite formed in situ in many irons and some chondrites by rapid solidification at cooling rates of ? 105°C/sec. Their kamacite and taenite compositions may result from annealing at ~250°C of metallic glass or exceedingly fine-grained quench products.  相似文献   

18.
Obsidian glass alteration experiments under near hydrothermal conditions were performed to study mechanism and conditions of formation of altered minerals. X-ray diffraction patterns and cell dimensions of the specimens treated at 150, 200 and 300°C (pH = 8.03) revealed appearance of three main minerals — illite (9.5–10 Å), chlorite (7.04 Å) and halloysite (10.25Å). Further increase in the pH favours matrix dissolution with the formation of secondary altered layers. SEM-EDS study show that the alteration causes smoothing of the grain surfaces. These surfaces exhibits etch pits and series of depressions, formed by the process of dissolution. SEM — Back Scattered Electron images of obsidian specimens show thin laminae of smectite, with foliated bulky rims and cellular honeycomb texture, formed by precipitation from the solution as well as by direct transformation of glass during alteration. This mechanism is resulting from the alteration of alkalis by ionic inter-diffusion with H3O+ and H+ and inward diffusion of H2O, leading to free diffusion of silica into solution and then to a local rearrangement of the glass framework. Thus, a direct transformation of glass into clay minerals is the major reaction mechanism as evidenced by the mechanism of glass dissolution and subsequent mineral precipitation.  相似文献   

19.
Electronic and magnetic properties of tennantite subfamily of tetrahedrite-group minerals have been studied by copper nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and SQUID magnetometry methods. The temperature dependences of copper NQR frequencies and line-width, nuclear spin-lattice relaxation rate T 1−1 and nuclear spin-echo decay rate T 2−1 in tennantite samples in the temperature range 4.2–210 K is evidence of the presence of field fluctuations caused by electronic spins hopping between copper CuS3 positions via S2 bridging atom. The analysis of copper NQR data at low temperatures points to the magnetic phase transition near 65 K. The magnetic susceptibility in the range 2–300 K shows a Curie–Weiss behavior, which is mainly determined by Fe2+ paramagnetic substituting ions.  相似文献   

20.
On heating the paramagnetic clay mineral nontronite for ≈ 30 h at 970 °C in air, a new ferrimagnetic phase forms which was studied by magnetic techniques, microprobe analysis, x-ray diffraction and Mössbauer spectroscopy. The new phase has a Curie temperature T c ≈ 240°C and high magnetic anisotropy at room temperature with a spontaneous magnetization >12 Am2/kg. Semiquantitative microprobe analyses show Fe to be the dominating consistuent. X-ray analysis points to a lattice which may be similar to that of ?-Fe2O3 but differs from it in detail. 57Fe Mössbauer spectra, taken between 78 K and 295 °C, can be deconvoluted into three sextet subpatterns in the ferrimagnetic region which are well resolved at room temperature and exhibit a rather small line width. Above T c, a doublet is visible which is typical for Fe3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号