首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Four diogenites, four howardites and seven eucrites have been analysed for major, minor and a number of trace elements by X-ray fluorescence spectrometry. Inter-element relationships between various elements in howardites, particularly refractory elements, are interpreted in the light of the recently proposed mixing model, whereby howardites are considered to be mixtures of eucritic and diogenitic material. Differences in composition observed between two samples of Frankfort analysed in this work lend strong support to this hypothesis. The nature of the proposed end-member composition in howardites is shown to be variable.  相似文献   

2.
Chemical data are presented for the basic lavas of the two volcanic shields, Piton des Neiges and Piton de la Fournaise, which comprise Reunion Island. In addition, data for cumulate xenoliths have been used to predict mineral/melt distribution coefficient values for the Reunion magmas.The younger volcanic shield, Piton de la Fournaise, comprises two lava sequences, the >0.5−0.2-m.y. B.P. Primary Shield lavas, and the <0.2-m.y. B.P. Caldera Series lavas. Fractional crystallization models for these lavas indicate that olivine is the major fractionating phase during the evolution from the parental basalt composition to the average basaltic liquid. Only during the evolution of the older, Primary Shield lavas has the common fractionation of an ol + cpx + plag + mt assemblage resulted in the eruption of hawaiitic, ankaramitic and feldspar-phyric lavas. The restriction of the Caldera Series liquids predominantly to olivine fractionation and the extensive cotectic fractionation during the evolution of the Primary Shield sequences is interpreted in terms of the maturity of the volcanic center. The younger stages of evolution involve high magma input into a well-developed feeder and reservoir system, thus maintaining the liquids above a cotectic surface. Whereas, during the evolution of the Primary Shield lavas, lower magma input rates into a less well-developed feeder system increased the probability of the fractionating liquid attaining a cotectic surface. Fractional crystallization accounts for all the chemical variation observed for the Piton de la Fournaise basaltic magmas. The analytical data are closely comparable to the rare earth element (REE) and trace element fractionation curves predicted by least-squares calculations, this supports the use of such models in quantitative evaluation of fractional crystallization.A preliminary survey of Sr isotope values indicates that the oldest (>2 m.y. B.P.) lava sequences of Piton des Neiges may be derived from a source which was isotopically distinct from that of the <2 m.y. B.P. lavas of both volcanic shields. These latter sequences are remarkably consistent in both isotopic and trace element abundance implying a homogeneous source material and an invariable partial melting process. Partial melting calculations indicate that the basaltic lavas have been derived by 5–10% melting of a garnet-poor peridotite (cpx/gt 9). Systematic differences in the light- and heavy-REE patterns between similar basaltic provinces are interpreted to be a result of variation in the nature of the phases buffering the entry of light- and/or heavy-REE into the melt during partial fusion.  相似文献   

3.
The five diogenites, Johnstown, Roda, Ellemeet, Shalka and Tatahouine, give scattered data in the87Rb/86Sr,87Sr/86Sr diagram. This can result from a disturbance which occurred later than 4.45 Ga ago. However, it is shown that if samples of sufficient size were analyzed, there meteorites could plot on the eucrite isochron and are thereby in agreement with a genetic relation between eucrites, howardites and diogenites. The age of eucrite differentiation from diogenites has been computed using data from the two families yielding an age of 4.47±0.1Ga(2σ) (λ=1.42×10?11a?1), the initial87Sr/86Sr ratio being BABI.  相似文献   

4.
A numerical model has been formulated that simulates the differentiation of mafic and ultramafic magmas by the fractionation of olivine and molten sulfide. The model is used to simulate the low-pressure differentiation of a komatiite magma series under both sulfide-undersaturated and sulfide-saturated conditions. Under sulfide-saturated conditions, the molecular ratio of olivine to sulfide removed from the silicate liquid is39 ± 2. Separation of this relatively small proportion of sulfide melt results in significantly different chemical trends in derivative liquids and fractionated material than are produced in the sulfide-undersaturated system, and this observation may be useful in mineral exploration. Comparison of the model results with published analyses of natural rocks indicate that the liquid equivalent members of the komatiite suite at Yakabindie, Western Australia, could be derivative liquids produced by fractional crystallization of olivine from a sulfide-undersaturated parental magma containing about 32 wt.% MgO. Derivation of a komatiitic pyroxenite with 20 wt.% MgO would require fractionation of 43.4 mol.% olivine whereas production of a komatiitic basalt with 12 wt.% MgO would involve removal of 58.5 mol.% olivine. Synvolcanic intrusive dunitic lenses at Yakabindie could have been produced by accumulation of material separated during about 3.8 mol.% fractionation of a similar parental magma, but the concentration of chalcophile elements in these bodies requires that the magma was sulfide-saturated.  相似文献   

5.
Major element, Rb, Sr, Ba, Cr and V analyses as well as 13 new rare earth element (REE) analyses are presented for the greywacke basement surrounding the Taupo Volcanic Zone (TVZ). On this basis the basement rocks are divided into a Western Basement of approximately andesitic composition ( 62% SiO2) and an Eastern Basement of approximately granodiorite composition ( 75% SiO2). These analyses, 5 new REE analyses for the rhyolites, and published data for the volcanic rocks of TVZ are used to investigate the petrogenesis of rhyolitic rocks in the area.Least-squares mixing calculations for major elements show that 88% fractional crystallisation of high-alumina basalt produces a liquid of rhyolitic bulk composition, but Rayleigh fractionation models show that the trace element concentrations of the rhyolites are inconsistent with basalt fractionation. 57% fractionation of the assemblage plagioclase (35.6%), orthopyroxene (9.7%), clinopyroxene (7.8%), ilmenite (0.6%) and magnetite (3.4%) from a plagioclase-pyroxene andesite can produce liquids of rhyolitic bulk composition. REE concentrations produced by this model are consistent with those observed in the rhyolites but predicted Ba and Rb values are lower and V concentrations are higher than those in the rhyolites. Andesite fractionation also produces an unrealistic fractionation of the Cr/V ratio.A non-modal melting model involving 35% melting of a granulitic assemblage (plagioclase + quartz + clinopyroxene + orthopyroxene + biotite + magnetite + cordierite) with a bulk composition equivalent to the Western Basement can reproduce the REE pattern of the rhyolites as well as the concentrations of Rb and Ba. Sr values remain anomalously high, but the Cr/V ratio does not indicate fractionation. Absolute values of Cr and V are within the uncertainties of published crystal—liquid partition coefficients. The rhyolites have relatively flat REE patterns (La/Yb 7.5), as do the greywackes (La/Yb 8.2), so it is therefore unlikely that the rhyolites equilibrated with a garnet or amphibole-bearing assemblage.  相似文献   

6.
Isotopic anomalies in Mo and Zr have recently been reported for bulk chondrites and iron meteorites and have been interpreted in terms of a primordial nucleosynthetic heterogeneity in the solar nebula. We report precise Zr isotopic measurements of carbonaceous, ordinary and enstatite chondrites, eucrites, mesosiderites and lunar rocks. All bulk rock samples yield isotopic compositions that are identical to the terrestrial standard within the analytical uncertainty. No anomalies in 92Zr are found in any samples including high Nb/Zr eucrites and high and low Nb/Zr calcium-aluminum-rich inclusions (CAIs). These data are consistent with the most recent estimates of <10−4 for the initial 92Nb/93Nb of the solar system. There exists a trace of isotopic heterogeneity in the form of a small excess of r-process 96Zr in some refractory CAIs and some metal-rich phases of Renazzo. A more striking enrichment in 96Zr is found in acetic acid leachates of the Allende CV carbonaceous chondrite. These data indicate that the r- and s-process Zr components found in presolar grains were well mixed on a large scale prior to planetary accretion. However, some CAIs formed before mixing was complete, such that they were able to sample a population of r-process-enriched material. The maximum amount of additional r-process component that was added to the otherwise well-mixed Zr in the molecular cloud or disk corresponds to ∼0.01%.  相似文献   

7.
Silicic peralkaline volcanic rocks of the afar depression (Ethiopia)   总被引:1,自引:0,他引:1  
Three main types of recent volcanism may be distinguished in the Afar Depression: 1) oceanic volcanism of the axial ranges; 2) volcanism along the margins where an attenuated sialic crust probably occurs; 3) mainly fissural volcanism of Central-Southern Afar, with associated central volcanoes, similar as a whole to the volcanism of the Ethiopian Rift Valley. Peralkaline silicic volcanic rocks are found in all the three groups but showing some different characteristics which seem related to their geological location and which probably reflect different sources. Moreover emplacement of peralkaline granitic bodies, associated with volcanics of the same composition, marks the first stage of formation of the Afar Depression, in the Early Miocene. Axial Ranges: Erta’Ale and Boina volcanic ranges indicate that peralkaline rocks are the final liquids produced by fractionation of basalt in shallow magma chambers of central volcanoes. The parental magma is a transitional type of basalt with a mildly alkalic affinity, which fractionated under lowpH2O-pO2 conditions. Transition to peralkaline liquids is realized without passing a «true» trachytic (low silica) stage. The first peralkaline liquid is a low silica comendite and evidence exists that «plagioclase effect» was active in determining the first peralkalinity. Within the peralkaline field a fractionation mainly controlled by alkali feldspar progressively increases the peralkalinity and silica oversaturation of residual liquids (transition from comendites to pantellerites). The most peralkaline pantellerites of Boina are produced by fractionation of an alkali feldspar of constant composition (Ab65–68 Or35–32) suggesting that these liquids lie on a «low temperature zone» of the peralkaline oversaturated system. Marginal Units: On the borders of the depression peralkaline silicics are found in volcanic massifs mainly made of metaluminous silicic products. Petrology and geochemistry suggest a complex origin. Crystal fractionation, contamination with sialic crust and chemical changes related to a volatile rich phase, all these processes probably played a role in the genesis of these peralkaline silicic rocks. Central-Southern Afar Fissural Volcanism: Mildly alkaline basalts are associated with peralkaline and metaluminous silicics; intermediate rocks are very scanty. Fractionation from deep seated magmatic bodies with selective eruptivity and partial melting at depth of associated basalts or of a common source material are possible genetic mechanisms.  相似文献   

8.
Major, minor and trace element abundances were determined in seven Angra dos Reis samples including whole rocks, fassaite (clinopyroxene), olivine and whitlockite separates via sequential instrumental neutron activation analysis. The chondritic normalized rare earth element (REE) abundance pattern for the Angra dos Reis clinopyroxene separates shows a concave downward shape with a small negative Eu anomaly. The strong fractionation between the light and the heavy REE in olivine separates could be attributed to the presence of islands of kirschsteinite in the olivines. The large-ion lithophile trace elements were highly enriched in the whitlockite separate as expected (e.g. La ≈ 370 ppm). The lower Hf and Sc abundances in whitlockite compared to that in the equilibrium “magma” could be the result of favorable partitioning of Hf and Sc in baddeleyite, which may have crystallized prior to or with whitlockite in the interstitial liquid. Comparison of whole rock with mineral separate data shows the presence of ~3% olivine, ~2.6% spinel and small amounts of metallic Ni-Fe and troilite in the whole rock.The trace element abundances in the derivative magma from which the Angra dos Reis clinopyroxene crystallized were estimated from the clinopyroxene data and the clinopyroxene mineral-liquid partition coefficients. From the derivative magma, the trace element abundances in the possible parent magmas were calculated by assuming that these parent magmas have undergone different degrees of clinopyroxene fractional crystallization to yield the Angra dos Reis derivative magma. Using the trace element abundances in these possible parent magmas, a two-stage crystal-liquid fractionation model with source material containing olivine, orthopyroxene and clinopyroxene is presented for the genesis of Angra dos Reis. Possible combinations of the degree of equilibrium non-modal partial melting, the source mineral composition and the initial element abundances required to generate possible Angra dos Reis parent magmas are calculated by the multilinear regression analysis method. Favorable solutions for this two-stage crystal-liquid fractionation model could be that Angra dos Reis crystallized at ~70% fractional crystallization of clinopyroxene from magmas generated by reasonable degrees of equilibrium partial melting (~7–10%) of deep-seated primitive source materials (olivine ~54–30%, orthopyroxene ~33–53%, and clinopyroxene ~13–17%) with trace element (Ba, Sr, REE and Sc) abundances ~3.5–4.7 × chondrites. These calculated REE abundances in the Angra dos Reis parent body are very similar to those suggested for the primordial moon (~3–5 × chondrites).Possible genetic relationships between Angra dos Reis and other achondrites, especially cumulate eucrites and nakhlites, are studied. Apparently, the unique Angra dos Reis could not be related to those achondrites by crystal-liquid fractionation of the same parent body.  相似文献   

9.
The volcanic history of Somma-Vesuvius indicates that salic products compatible with an origin by fractionation within a shallow magma chamber have been repeatedly erupted («Plinian» pumice deposits). The last two of these eruptions, (79 A.D. and 3500 B.P.) were carefully studied. Interaction with calcareous country rocks had limited importance, and all data indicate that differentiated magmas were produced by crystal-liquid fractionation within the undersaturated part of petrogeny’s residua system at about 1 kb water pressure. The solid-liquid trend indicates that the derivative magmas originated by fractionation of slightly but significantly different parental liquids. Some lavas of appropriate composition were selected as parental liquids to compute the entity of the fractionation. Results suggest that in both bases a fractionation of about 70 weight % was needed to produce liquids with the composition of the pumice. The combination of all data indicates that the two Plinian eruptions were fed by a magma chamber (3–4 km deep) having a volume of approx. 2.0–2.5 km3. The temperature of the magma that initially entered the chamber was about 1100°C, whereas the temperature of the residual liquids erupted was Plinian pumice was 800° and 850°C respectively. There is no evidence that such a magma chamber existed at Vesuvius after the 79 A.D. eruption. These results have relevant practical implications for volcanic hazard and monitoring and for geothermal energy.  相似文献   

10.
Layered sills and flows are conspicuous in the komatiitic volcanics of the Chukotat Group of the Aphebian Cape Smith fold belt in New Quebec. These bodies consist of a lower ultramafic member with an overlying gabbroic complex and are bound by margins of quench-textured, pyroxene-rich melanogabbro. Features such as cyclic layering of pyroxenite and peridotite, successive appearance of euhedral olivine, clinopyroxene, and plagioclase, and polarized compositional variation indicate that the ultramafic member and lower gabbro are crystal cumulates. The uppermost gabbros, however, appear to represent liquids derived by removal of these cumulates. The significance of these bodies is that their initial liquids were at least as basic as pyroxenitic komatiites (14 wt.% MgO) while the residual liquids are Fe-Ti-rich tholeiites. Similarity between the liquid line of descent within these differentiated bodies and the spectrum of volcanic composition of the Chukotat Group as a whole suggests that the komatiites and tholeiites of the latter may constitute a single magmatic suite whose chemical diversity is a function of low-pressure, crystal fractionation.  相似文献   

11.
Volcanological and petrological data suggest that the Phlegraean Fields volcanic activity has been fed, at least in the last 10,500 years, by a not-refilled magma chamber where trachytic residual liquids were produced by fractionation of a trachybasaltic magma. Using estimated volumes of the erupted products andP–T data obtained through petrological studies, a conductive thermal model of the chamber was built up in order to estimate its past and present size. Results suggest a volume decrease from approximately 14 to 1.4 km3 of the trachybasaltic magma in 10,500 years. Trachytic liquid would also be present in the chamber in a minimum amount of 0.4 km3. The model allowed some insights on the petrogenesis of the Phlegraean trachytes, suggesting that they were erupted as liquids because thermally buffered within the magma chamber.  相似文献   

12.
A new version of COMAGMAT-3.5 model designed for computer simulations of equilibrium and fractional crystallization of basaltic magmas at low to high pressures is presented. The most important modifications of COMAGMAT include an ability to calculate more accurately the crystallization of magnetite and ilmenite, allowing the user to study numerically the effect of oxygen fugacity on basalt magma fractionation trends. Methodological principles of the use of COMAGMAT were discussed based on its thermodynamical and empirical basis, including specific details of the model calibration. Using COMAGMAT-3.5 a set of phase equilibria calculations (called Geochemical Thermometry) has been conducted for six cumulative rocks from the Marginal Border Series of the Skaergaard intrusion. As a result, initial magma temperature (1165±10°C) and trapped melt composition proposed to be parental magma to the Skaergaard intrusion were determined. Computer simulations of perfect fractionation of this composition as well as another proposed parent produced petrochemical trends opposite to those followed from natural observations. This is interpreted as evidence for an initial Skaergaard magma containing a large amount of olivine and plagioclase crystals (about 40–45%), so that the proposed and calculated parents are related through the melt trapped in the crystal–liquid mixture. This promotes the conclusion that the Skaergaard magma fractionation process was intermediate between equilibrium and fractional crystallization. In this case the classic Wager's trend should be considered an exception rather than a rule for the differentiation of ferro-basaltic magmas. A polybaric version of COMAGMAT has been applied for the genetic interpretation of a volcanic suite from the Klyuchevskoi volcano, Kamchatka, Russia. To identify petrological processes responsible for the observed suite ranging from high-magnesia to high-alumina basalts, we used the model to simulate the Klyuchevskoi suite assuming isobaric crystallization of a parental HMB magma at a variety of pressures and a separate set of simulations assuming fractionation during continuous magma ascent from a depth of 60 km. These results indicate that the Klyuchevskoi trend can be produced by 40% fractionation of Ol–Aug–Sp±Opx assemblages during ascent of the parental HMB magma over the pressure range 19–7 kbar with the rate of decompression being 0.33 kbar/% crystallized (at 1350–1110°C), with 2 wt.% of H2O in the initial melt and 3 wt.% of H2O in the resultant high-Al basalt.  相似文献   

13.
The Aegean volcanic arc is one of the most important geological structure of the Mediterranean area. It is a belt of volcanic centers consisting of products ranging from basaltic, andesitic, dacitic to rhyolitic in composition, all of them displaying a typical calc-alkaline chemical character. The most abundant rock types are represented by andesites and dacites. Minor amounts of basalts and rhyolites occur mainly in the central-eastern sector of the arc. The REE, Rb, Sr, Ba, Th, Ta, Hf, Zr, Ni, Co, V and Cr abundances determined in 27 representative samples from different centers suggest that: 1) the intermediate and acidic terms are products of crystal/liquid fractionation processes starting from basic parent magmas: 2) large variations in incompatible elements occur in the most basic samples that are interpreted as evidence for heterogeneously LIL element-enriched mantle source; 3) plagioclase played a role in the evolution of the volcanic centers of the eastern and central arc different from that played in the volcanoes of the western sector. Along the arc, the differences in the distribution of lithological types, in the volumes of erupted material, in the volcanological characteristics of the different centers as well as in the patterns of trace element distribution in the volcanites are considered to be connected with the prevailing tectonic regime affecting the various sectors of the arc.  相似文献   

14.
Mineral separates of pure magnetite from the upper zone of the Bushveld Complex have been analysed for Cr. Detailed sampling within layers of massive magnetite indicates that the Cr content frequently shows an extremely rapid but regular depletion with height (for example, by a factor of seven over 85 cm of massive magnetite), with sudden reversals of variable magnitude. Rayleigh Law fractionation, from a homogeneous liquid of the volume now seen as cumulate rocks overlying the sampled horizons, cannot satisfy these observed concentration gradients. A diffusion-controlled crystallization model is preferred. In another vertical section of massive magnetite the Cr content remains constant with increasing height, and is interpreted as indicating a steady state situation where the rate of depletion of Cr by magnetite fractionation is balanced by the rate of diffusive addition into the crystallization zone. Reversals in Cr content sometimes occur in the middle of pure magnetite layers and are attributed to convective overturn in the magma chamber. These results provide geochemical support for the model of convection cells and bottom crystallization in large magma reservoirs as proposed by Jackson [20]. Depletion of compatible elements in this bottom layer causes chemical inhomogeneity in the magma.Sections, composed of several layers of magnetite sandwiched between magnetite-bearing gabbro, have also been studied. In one case, a steady decrease in Cr content with increasing height in the separated magnetite was observed; in another, several irregular reversals were found. There appears to be no systematic relation between convection cycles, the depletion in Cr and the formation of pure magnetite layers, indicating that the chemical composition of the magma does not control the production of monomineralic layers. The fluctuating pressure model envisaged by Cameron [16] for the formation of such layers is entirely consistent with these data.  相似文献   

15.
Expanded beam microprobe analyses of 18 drop-formed chondrules and 5 irregular masses of devitrified glass in the Manych chondrite show trends and ranges of chemical variation similar to those reported previously for large microporphyritic chondrules in this meteorite. These variations are inconsistent with differentiation of chondrules by crystal-liquid fractionation or separation of immiscible silicate and Fe-Ni-S liquids at various oxygen fugacities. They appear to reflect non-representative sampling of microporphyritic precursor rocks texturally and mineralogically similar to, but in some cases coarser than, the microporphyritic chondrules in Manych. About half of the droplet chondrules and devitrified glasses also bear evidence of more or less vapor-liquid fractionation.The chemical and petrographic properties of Manych chondrules are best explained by a genetic model which entails: (1) melting of extended masses of chondritic material (≥10 cm across); (2) extraction of immiscible Fe-Ni-S liquids; (3) crystallization of the remaining silicate liquids to form microporphyritic rocks; and (4) fragmentation of these rocks to produce microporphyritic chondrules or, with remelting, droplet chondrules. The initial melting may have been caused by either impact or solar heating, but fragmentation and remelting of the microporphyritic precursor rocks were most likely caused by impact.  相似文献   

16.
A petrochemical study of representative lavas from Vico, relative to their established stratigraphic succession, shows that the erupted magma was recurrent in composition. The predominant differentiation trend of the lava suite, illustrated by means of a principal component analysis (Le Maitre, 1968), leads to trachytic residual compositions which can be interpreted in terms of crystal fractionation processes under volcanic pressure regime.  相似文献   

17.
Four volcanic units have been distinguished on the islanf of Fayal. In order of decreasing age, these are:
  • the eastern rift, and products of the activity preceding the collapse of the caldera visible at the summit of the stratovolcano, characterized by an alkaline series: basalt-hawaiite-mugearite-trachyte;
  • the products of the explosive and postcaldera activity where only evolved lavas occur (benmoreites and trachytes);
  • the recent basaltic activity of the Horta region;
  • the western fissural activity — recent and historical.
  • The two last units are characterized by exclusively basaltic, frequently picritic, eruptions. The lava groups cannot be distinguished by chemical criteria and have thus been treated as a single suite. Ninety samples have been analysed by X-ray fluorescence, and the mineralogy of 6 representative specimens has been determined by microprobe. The data were used to work out the evolution of the lava. The series is shown to have been produced by crystal fractionation under moderate water pressure from an alkali basalt. Moderate fractionation of amphibole during the last stages allow the liquids to remain weakly undersaturated from initial basalts until final trachytes. Mineralogical and chemical diversity between the most evolved lavas, benmoreites and trachytes, is an evidence of the strong influence ofpH2O and/orfO2 on the composition of such residua.  相似文献   

    18.
    The Tertiary volcanism of Eastern Macedonia and Western Thrace (Greece) developed in association with the sedimentary basin which formed, from Eocene to Oligocene, along the southern margin of the Rhodope Massif.The volcanic products, ranging in composition from basaltic andesites to rhyolites, show an overall calc-alkaline orogenic affinity, while chemical characteristics identify different groups of rocks, probably reflecting minor differences among parent magmas. The observed evolution within any group of rocks is compatible with fractional crystallization processes acting on relatively shallow magma bodies.The Sr isotopic composition of rhyolitic member shows an initial87Sr/86Sr ratio comparable with that of basaltic andesites, reinforcing the hypothesis of a crystal/liquid line of descent.Geochemical and petrographic evidence, on the whole, suggests that the investigated orogenic association developed on an active continental margin characterized by a relatively thick crust, acting as a density filter for the basic magmas and facilitating their storage and fractionation within the crust itself. Minor contamination by interaction with host materials may also have occurred.Stratigraphic and K/Ar geochronological data indicate that the volcanic activity started in Upper Eocene and reached its maximum development in Upper Oligocene. From Lower Miocene, the volcanism shifted southward in the Central Aegean area and in part of Western Anatolia, coming to an end by Middle Miocene.The southward migration of the volcanic front has been interpreted as a consequence of the increase in the dipping of the Benioff zone, due to the decrease of penetrative strength after the main phase of continental collision.  相似文献   

    19.
    The hydrogen isotope fractionation factors between epidote and aqueous 1 M and 4 M NaCl, 1 M CaCl2 solutions, and between epidote and seawater, have been measured over the temperature range 250–550°C over which the degree of dissociation of dissolved species varies significantly. Measured fractionations at 350°C are decreased by up to 12‰, 9‰ and 7‰ relative to pure water in seawater, 1 M CaCl2 and 1 M NaCl respectively, while above 500°C fractionations are not measurably dependent on fluid composition. Water—solution fractionation factors are derived which are generally applicable to the correction of mineral—water hydrogen isotope fractionations for the composition of the fluid phase.The hydrogen isotope compositions of natural epidotes are interpreted in the light of experimental fractionation data for situations where temperature, δD (fluid), and, in some cases, fluid chemistry, are independently known. Epidotes from active geothermal systems have hydrogen isotope quench temperatures consistent with or close to measured well temperatures unless the measured temperature has declined substantially since epidote formation or there is uncertainty in the D/H ratio of the water associated with the epidote because of isotopic heterogeneity in the well waters. Hydrothermal and metamorphic epidotes show closure temperatures of 175–225°C and 200–250°C. There is no evidence that retrograde metamorphic fluids, if present, are isotopically different from prograde fluids.The water-solution fractionations indicate strong solute-solvent interactions between 250 and 450°C and imply that both dissociated and associated species contribute to the fractionation effects through modification of the orientations and structure of the water molecules. Solute-solvent interactions become negligible at temperatures around 550°C.  相似文献   

    20.
    Total-rock 87Rb-87Sr measurements have been carried out on ten eucrites. Internal “isochrons” were determined for Ibitira, Bereba, Pasamonte, Stannern, Sioux County and Juvinas. Ibitira as well as Juvinas (previously published) give an age of 4.52 ± 0.25 b.y. The corresponding “ages” of Bereba and Sioux County are 4.17 ± 0.26 b.y. and 4.19 ± 0.14 b.y. Stannern and Pasamonte have maximum “ages” of 3.1 and 2.6 b.y., respectively. These last four “ages” are significantly lower than 4.55 b.y.Using the total rocks and the two primitive eucrites Ibitira and Juvinas, we define as the best differentiation age for eucrites 4.57 ± 0.13 b.y. which is better than any previous determination, and (87Sr/86Sr)BABI = 0.69899 ± 0.00004. We discuss the early differentiation of the basaltic achondrite parent body by assuming that the parent body started with chondritic composition and had a two-step evolution during the very early history of the solar system.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号