首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Paleomagnetic, rock magnetic, and petrophysical results are presented for impactites and target rocks from the Lake Jänisjärvi impact structure, Russian Karelia. The impactites (tagamites, suevites, and lithic breccias) are characterized by increased porosity and magnetization, which is in agreement with observations performed at other impact structures. Thermomagnetic, hysteresis, and scanning electron microscope (SEM) analysis document the presence of primary multidomain titanomagnetite with additional secondary titanomaghemite and ilmenohematite. The characteristic impact‐related remanent magnetization (ChRM) direction (D = 101.5°, I = 73.1°, α95 = 6.2°) yields a pole (Lat. = 45.0°N, Long. = 76.9°E, dp = 9.9°, dm = 11.0°). Additionally, the same component is observed as an overprint on some rocks located in the vicinity of the structure, which provides proofs of its primary origin. An attempt was made to determine the ancient geomagnetic field intensity. Seven reliable results were obtained, yielding an ancient intensity of 68.7 ± 7.6 μT (corresponding to VDM of 10.3 ± 1.1 times 1022 Am2). The intensity, however, appears to be biased toward high values mainly because of the concave shape of the Arai diagrams. The new paleomagnetic data and published isotopic ages for the structure are in disagreement. According to well‐defined paleomagnetic data, two possible ages for magnetization of Jänisjärvi rocks exist: 1) Late Sveconorwegian age (900–850 Myr) or 2) Late Cambrian age (?500 Myr). However, published isotopic ages are 718 ± 5 Myr (K‐Ar) and 698 ± 22 Myr (39Ar‐40Ar), but such isotopic dating methods are often ambiguous for the impactites.  相似文献   

2.
Abstract— 40Ar-39Ar age measurements were made for three whole rock melt samples produced during impact events which formed the Dellen, Jänisjärvi, and Sääksjärvi craters on the Baltic Shield. An age of 109.6 ± 1.0 Ma was obtained for the Dellen sample based on an age spectrum plateau. The age spectrum shows a small (7%) loss of radiogenic 40Ar from low temperature fractions. Ages of 698 ± 22 Ma and 560 ± 12 Ma were obtained from isochrons for the Jänisjärvi and Sääksjärvi samples, respectively. Data obtained by laser degassing support the Sääksjärvi result. The presence of excess 40Ar is indicated in lower temperature fractions for both samples and is correlated with K concentrations in the Sääksjärvi sample. Models explaining these results may require a change in the local “atmospheric” Ar isotopic composition as cooling of melt rocks proceeded. However, it cannot be excluded that devitrification and/or alteration changed the Ar budget. A crater production rate on the Baltic Shield based on measured ages of 6 craters is (0.3 ± 0.2) · 10?14 20-km-and-larger craters per km2 per year, in satisfactory agreement with previous estimates.  相似文献   

3.
Abstract— Here we present the results of a geochemical study of the projectile component in impactmelt rocks from the Lappajärvi impact structure, Finland. Main‐ and trace‐element analyses, including platinum group elements (PGEs), were carried out on twenty impact‐melt rock samples from different locations and on two shocked granite fragments. The results clearly illustrate that all the impact melt rocks are contaminated with an extraterrestrial component. An identification of the projectile type was performed by determining the projectile elemental ratios and comparing the corresponding element ratios in chondrites. The projectile elemental ratios suggest an H chondrite as the most likely projectile type for the Lappajärvi impact structure. The PGE composition of the highly diluted projectile component (?0.05 and 0.7 wt% in the impact‐melt rocks) is similar to the recent meteorite population of H chondrites reaching Earth. The relative abundance of ordinary chondrites, including H, L, and LL chondrites, as projectiles at terrestrial impact structures is most likely related to the position of their parent bodies relative to the main resonance positions. This relative abundance of ordinary chondrites suggests a strong bias of the impactor population toward inner Main Belt objects.  相似文献   

4.
Abstract— For the ~65 km sized Kara impact structure close to the polar Ural, we report an age of 70.3 ± 2.2 Ma (2s?), defined by the mean of 40Ar-39Ar plateau ages for three glassy or crystalline impact melt rocks cleaned from mineral and rock clasts. The fine structure of the age spectra of these samples can quantitatively be simulated by modeling taking into account 39Ar recoil effects, without assuming the presence of excess Ar. The calculations corroborate our age results by showing that 39Ar recoil does not affect the plateau fractions. Previously, Kara has been proposed as a probable K/T impact site or was related to the Campanian-Maastrichtian boundary at 73 Ma. At the 2s? level, both suggestions are ruled out by the well-constrained age for the Kara impact structure.  相似文献   

5.
Abstract— Mineralogical, petrographical and chemical determinations were made for 743 agate (banded variety of chalcedonic quartz) nodules (diameters from 5 mm to 5 cm) formed during postimpact, low-temperature hydrothermal activity as vesicle fillings in the melt rocks of the Sääksjärvi meteorite impact structure (diameter 5 km) in southwest Finland. Other hydrothermal vesicle fillings in the impact melt rocks include chlorite, mordenite, smectite and kaolinite. The agates were classified into two types, whose mineralogical properties and chemical compositions fall within the range of volcanic agates (basaltic and rhyolitic host rocks). The relatively high age (~510 Ma) of the Sääksjärvi impact melt rocks, however, is reflected by the presence of recrystallization textures, which are rare in younger volcanic agates. The Sääksjärvi structure was initially located after following the fortuitous discovery of agate “path-finders” in the glacial overburden. It is recommended that wherever volcanic type agates are found as float in Precambrian shield areas devoid of younger volcanic rocks, the possible presence of impact (or volcanic) craters in the vicinity should be considered.  相似文献   

6.
Shock metamorphic features at the Saarijärvi (D > 2 km) and Söderfjärden (D = 6.5 km) structures in Finland have so far only been studied tentatively, although both are considered to be proven impact structures. This work presents the first detailed universal stage study of planar deformation features (PDFs), feather feature lamellae (FFL), and planar fractures (PFs) in quartz grains from a polymict impact breccia dike from Söderfjärden, and from sedimentary crater‐fill rocks from Saarijärvi. Planar microstructures, particularly PDFs, are very rare and poorly developed or preserved in Saarijärvi, whereas in Söderfjärden they are much more common and well defined. Miller–Bravais indices of the planar microstructures in both Saarijärvi and Söderfjärden are indicative of relatively low‐shock pressure but high shear conditions, only compatible with an impact origin for these structures. Although a Proterozoic age for Saarijärvi cannot be ruled out, the observations of shock features throughout the sedimentary crater‐fill sequence and a brecciated sedimentary dike below the crater floor are more consistent with a Lower Cambrian (or younger) impact age.  相似文献   

7.
Abstract— The lake Lappajärvi impact crater lies in Paleoproterozoic Svecofennian metasedimentary rocks, on the western side of the Central Finland granitoid complex (~1.9 Ga). Two conflicting ages have been reported for the meteorite impact: an age of 77.3 ± 0.4 Ma on the basis of Ar‐Ar whole‐rock data from impact melt samples and a paleomagnetic age of 195 Ma. During studies on impact crater indicator minerals at Lappajärvi, zircons with an atypical appearance were found in suevite boulders. These zircons seemed to have been affected by impact shock metamorphism and it was considered that they would be good candidates for ion microprobe U‐Pb dating, allowing a new and independent age estimate for the impact event at Lappajärvi. Four spot analyses on two black‐coated zircons plotted close to the upper intercept end of the concordia curve giving an approximate age of 1.8 Ga for the source rock. Seventeen analyses were done on three dull zircon grains showing patchy impact‐related partial recrystallization. Most of these data fell fairly well on a single discordia line with intercept ages of 73.3 ± 5.3 Ma and 1854 ± 51 Ma. However, five of the data spots near the lower intercept end fell on the younger side of the line. This was interpreted to indicate post‐impact loss of lead. Importantly, the new ion microprobe U‐Pb age of 73.3 ± 5.3 Ma is in a very good agreement with the previously reported Ar‐Ar age.  相似文献   

8.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

9.
The complex impact structure El'gygytgyn (age 3.6 Ma, diameter 18 km) in northeastern Russia was formed in ~88 Ma old volcanic target rocks of the Ochotsk‐Chukotsky Volcanic Belt (OCVB). In 2009, El'gygytgyn was the target of a drilling project of the International Continental Scientific Drilling Program (ICDP), and in summer 2011 it was investigated further by a Russian–German expedition. Drill core material and surface samples, including volcanic target rocks and impactites, have been investigated by various geochemical techniques in order to improve the record of trace element characteristics for these lithologies and to attempt to detect and constrain a possible meteoritic component. The bedrock units of the ICDP drill core reflect the felsic volcanics that are predominant in the crater vicinity. The overlying suevites comprise a mixture of all currently known target lithologies, dominated by felsic rocks but lacking a discernable meteoritic component based on platinum group element abundances. The reworked suevite, directly overlain by lake sediments, is not only comparatively enriched in shocked minerals and impact glass spherules, but also contains the highest concentrations of Os, Ir, Ru, and Rh compared to other El'gygytgyn impactites. This is—to a lesser extent—the result of admixture of a mafic component, but more likely the signature of a chondritic meteoritic component. However, the highly siderophile element contribution from target material akin to the mafic blocks of the ICDP drill core to the impactites remains poorly constrained.  相似文献   

10.
11.
Abstract— The 4 km wide and 500 m deep circular Kärdla impact structure in Hiiumaa Island, Estonia, of middle Ordovician age (~455 Ma), is buried under Upper Ordovician and Quaternary sediments. To constrain the geophysical models of the structure, petrophysical properties such as magnetic susceptibility, natural remanent magnetization (NRM), density, electrical conductivity, porosity and P-wave velocity were measured on samples of crystalline and sedimentary rocks collected from drill cores in different parts of the structure and the surrounding area. The results were used to interpret the central gravity anomaly of ?3 mGal and the magnetic anomaly of ?100 nT and also the surrounding weak positive anomalies revealed by high precision survey data. The unshocked granitic rocks outside the structure have a mean density of ~2630 kgm?3. Their shocked counterparts have densities of ~2400 kgm?3 at a depth of ~500 m, increasing up to 2550 kgm?3 at a depth of 850 m. Porosity and electrical conductivity decrease, but P-wave velocity increases as density increases away from the impact point. Thus, the gradual changes in the physical properties of the rocks as a function of radial distance from the crater centre are consistent with an impact origin for Kärdla. As in many other impact structures, the magnetization of the shocked rocks are also clearly lower than those of unshocked target rocks. A new geophysical and geological model of the Kärdla structure is presented based on geophysical field measurements and data on gradual changes in petrophysical parameters of the shocked target and overlying rocks, together with structural data from numerous boreholes. An important feature of this model is the lack of an observable geophysical signature of the central uplift observed in drillcores.  相似文献   

12.
Nine representative sediment sequences and pollen diagrams obtained during the Quaternary mapping programme carried out by the Geological Expedition (St. Petersburg, Russia) between 1960s and 1980s are presented from the Vologda area, NW Russian Plain, covering the time span from the Moscow cold (Saale) stage into the Late Valdai (Weichsel) substage. This work was done in order to shed light on the evolution of palaeoenvironments, vegetation and climate in the area. The results suggest that two major depressions in the Vologda area, namely the Mologa–Sheksnian and Prisukhonian basins, witnessed lake level fluctuations that were most likely closely linked to climatic fluctuations. It is suggested that during the Mikulino (Eem) thermal optimum most of the lowland areas were dry land. However, during the Early and Middle Valdai, the large depressions started to flood as a result of wet and cold climate. This caused the accumulation of lacustrine and also lacustrine–alluvial and lacustrine–bog sediments into the basins. The Valdai forest composition varied between closed spruce–birch forests and treeless tundra. Lakes persisted throughout the Valdai stage including the extremely dry last glacial maximum (LGM)-time when the Scandinavian Ice Sheet dammed the northbound rivers in the Vologda area.  相似文献   

13.
Abstract— The chitinozoan biostratigraphy in seven outcrops and four drilling cores in connection with the Lockne impact structure has been investigated. The impact event took place in early Caradoc (i.e., ~460.4 Ma ago) and in beds corresponding to the lower part of the Lagenochitina dalbyensis Zone (upper Dalby Limestone). The contact between the impact-related rocks and the secular postimpact sediments can be traced all over the impact structure, and up to a distance of 50 km away from the presumed crater center. The youngest postimpact sediments in the Lockne impact structure correspond to the lower Örå Shale (Belonechitina hirsuta Zone).  相似文献   

14.
Abstract– There are 31 proven impact structures in Fennoscandia—one of the most densely crater‐populated areas of the Earth. The recently discovered Keurusselkä impact structure (62°08′ N, 24°37′ E) is located within the Central Finland Granitoid Complex, which formed 1890–1860 Ma ago during the Svecofennian orogeny. It is a deeply eroded complex crater that yields in situ shatter cones with evidence of shock metamorphism, e.g., planar deformation features in quartz. New petrophysical and rock magnetic results of shocked and unshocked target rocks of various lithologies combined with paleomagnetic studies are presented. The suggested central uplift with shatter cones is characterized by increased magnetization and susceptibility. The presence of magnetite and pyrrhotite was observed as carriers for the remanent magnetization. Four different remanent magnetization directions were isolated: (1) a characteristic Svecofennian target rock component A with a mean direction of D = 334.8°, I = 45.6°, α95 = 14.9° yielding a pole (Plat = 51.1°, Plon = 241.9°, A95 = 15.1°), (2) component B, D = 42.4°, I = 64.1°, α95 = 8.4° yielding a pole (Plat = 61.0°, Plon = 129.1°, A95 = 10.6°), (3) component C (D = 159.5°, I = 65.4°, α95 = 10.7°) yielding a pole (Plat = 21.0°, Plon = 39.3°, A95 = 15.6°), and (4) component E (D = 275.5°, I = 62.0°, α95 = 14.4°) yielding a pole (Plat = 39.7°, Plon = 314.3°, A95 = 19.7°). Components C and E are considered much younger, possibly Neoproterozoic overprints, compared with the components A and B. The pole of component B corresponds with the 1120 Ma pole of Salla diabase dyke and is in agreement with the 40Ar/39Ar age of 1140 Ma from a pseudotachylitic breccia vein in a central part of the structure. Therefore, component B could be related to the impact, and thus represent the impact age.  相似文献   

15.
The 3.6 Ma El'gygytgyn impact structure, located in northeast Chukotka in Arctic Russia, was largely formed in acidic volcanic rocks. The 18 km diameter circular depression is today filled with Lake El'gygytgyn (diameter of 12 km) that contains a continuous record of lacustrine sediments of the Arctic from the past 3.6 Myr. In 2009, El'gygytgyn became the focus of the International Continental Scientific Drilling Program (ICDP) in which a total of 642.4 m of drill core was recovered. Lithostratigraphically, the drill cores comprise lacustrine sediment sequences, impact breccias, and deformed target rocks. The impactite core was recovered from 316.08 to 517.30 meters below lake floor (mblf). Because of the rare, outstanding recovery, the transition zone, ranging from 311.47 to 317.38 m, between the postimpact lacustrine sediments and the impactite sequences, was studied petrographically and geochemically. The transition layer comprises a mixture of about 6 m of loose sedimentary and volcanic material containing isolated clasts of minerals and melt. Shock metamorphic effects, such as planar fractures (PFs) and planar deformation features (PDFs), were observed in a few quartz grains. The discoveries of silica diaplectic glass hosting coesite, kinked micas and amphibole, lechatelierite, numerous impact melt shards and clasts, and spherules are associated with the impact event. The occurrence of spherules, impact melt clasts, silica diaplectic glass, and lechatelierite, about 1 m below the onset of the transition, marks the beginning of the more coherent impact ejecta layer. The results of siderophile interelement ratios of the transition layer spherules give indications of the relative contribution of the meteoritical component.  相似文献   

16.
Abstract– The Ritland structure is a newly discovered impact structure, which is located in southwestern Norway. The structure is the remnant of a simple crater 2.5 km in diameter and 350 m deep, which was excavated in Precambrian gneissic rocks. The crater was filled by sediments in Cambrian times and covered by thrust nappes of the Caledonian orogen in the Silurian–Devonian. Several succeeding events of uplift, erosion, and finally the Pleistocene glaciations, disclosed this well‐preserved structure. The erosion has exposed brecciated rocks of the original crater floor overlain by a thin layer of melt‐bearing rocks and postimpact crater‐filling breccias, sandstones, and shales. Quartz grains with planar deformation features occur frequently within the melt‐bearing unit, confirming the impact origin of the structure. The good exposures of infilling sediments have allowed a detailed reconstruction of the original crater morphology and its infilling history based on geological field mapping.  相似文献   

17.
Abstract– Although the meteorite impact origin of the Keurusselkä impact structure (central Finland) has been established on the basis of the occurrence of shatter cones, no detailed microscopic examination of the impactites from this structure has so far been made. Previous microscope investigations of in situ rocks did not yield any firm evidence of shock features (Raiskila et al. 2008; Kinnunen and Hietala 2009). We have carried out microscopic observations on petrographic thin sections from seven in situ shatter cone samples and report here the discovery of planar fractures (PFs) and planar deformation features (PDFs) in quartz and feldspar grains. The detection and characterization of microscopic shock metamorphic features in the investigated samples substantiates a meteorite impact origin for the Keurusselkä structure. The crystallographic orientations of 372 PDF sets in 276 quartz grains were measured, using a universal stage (U‐stage) microscope, for five of the seven distinct shatter cone samples. Based on our U‐stage results, we estimate that investigated shatter cone samples from the Keurusselkä structure have experienced peak shock pressures from approximately 2 GPa to slightly less than 20 GPa for the more heavily shocked samples. The decoration of most of the PDFs with fluid inclusions also indicates that these originally amorphous shock features were altered by postimpact processes. Finally, our field observations indicate that the exposed surface corresponds to the crater floor; it is, however, difficult to estimate the exact diameter of the structure and the precise amount of material that has been eroded since its formation.  相似文献   

18.
Abstract– The near‐circular Colônia structure, located in the southern suburbs of the mega‐city of São Paulo, Brazil, has attracted the attention of geoscientists for several decades due to its anomalous character and the complete absence of any plausible endogenous geologic explanation for its formation. Origin by impact cratering has been suggested repeatedly since the 1960s, but no direct evidence for this has been presented to date. New seismic data have been recently acquired at Colônia, providing new insights into the characteristics and possible layering of infill of the structure, as well as into the depth to the underlying basement. We review the current knowledge about the Colônia structure, present the new seismic data, and discuss the existing—as yet still indirect—evidence for a possible origin by an impact. The new data suggest the existence of a sedimentary fill of approximately 275 m thickness and also the presence of two intermediate zones between sediment and basement: an upper zone that is approximately 65 m thick and can be interpreted as a possible crater‐fill breccia, whereas the other zone possibly represents fractured/brecciated basement, with a thickness of approximately 50 m. Although this depth to basement seems to be inconsistent with the expected geometry of a simple, bowl‐shape impact structure of such diameter, there are a number of still unconstrained parameters that could explain this, such as projectile nature, size and velocity, impact angle, and particularly the current erosion depth.  相似文献   

19.
El'gygytgyn is a 3.6 Ma, 18 km diameter, impact crater formed in an approximately 88 Ma old volcanic target in Northeast Siberia. The structure has been the subject of a recent ICDP drilling project. In parallel to those efforts, a Russian‐German expedition was undertaken in summer 2011 to investigate the permafrost soil, lake terraces, and the volcanic rocks of the southern and eastern crater rim. This provided the unique opportunity for mapping and sampling of the volcanic target rocks around a large part of this complex impact structure. Samples from 43 outcrops were collected and analyzed petrographically and geochemically. The results were combined with earlier mapping outcomes to create a new geological map of this impact structure and its immediate environs, at the scale of 1:50,000. Compositions of our rock suites are compared with the lithologies of the 2009 ICDP drill core. The ignimbrite described as lower bedrock in the ICDP drill core shows petrographically and chemically strong similarities to the rhyolitic and rhyodacitic ignimbrites observed on surface. The suevite sequence exposed in the ICDP drill core is a mixture of all observed target rocks at their respective proportions in the area. In contrast to previous studies, the calculated average target composition of El'gygytgyn takes the contribution of the basic target rocks into consideration: mafic and intermediate rocks approximately 7.5%, and felsic rocks approximately 92.5%.  相似文献   

20.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号