首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— New model organic microparticles are used to assess the thermal ablation that occurs during aerogel capture at speeds from 1 to 6 km s?1. Commercial polystyrene particles (20 μm diameter) were coated with an ultrathin 20 nm overlayer of an organic conducting polymer, polypyrrole. This overlayer comprises only 0.8% by mass of the projectile but has a very strong Raman signature, hence its survival or destruction is a sensitive measure of the extent of chemical degradation suffered. After aerogel capture, microparticles were located via optical microscopy and their composition was analyzed in situ using Raman microscopy. The ultrathin polypyrrole overlayer survived essentially intact for impacts at ~1 km s?1, but significant surface carbonization was found at 2 km s?1, and major particle mass loss at ≥3 km s?1. Particles impacting at ~6.1 km s?1 (the speed at which cometary dust was collected in the NASA Stardust mission) were reduced to approximately half their original diameter during aerogel capture (i.e., a mass loss of 84%). Thus significant thermal ablation occurs at speeds above a few km s?1. This suggests that during the Stardust mission the thermal history of the terminal dust grains during capture in aerogel may be sufficient to cause significant processing or loss of organic materials. Further, while Raman D and G bands of carbon can be obtained from captured grains, they may well reflect the thermal processing during capture rather than the pre‐impact particle's thermal history.  相似文献   

2.
The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe‐K X‐ray absorption spectroscopy with in situ transmission XRD and X‐ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1 km s?1, using a light‐gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel.  相似文献   

3.
Abstract— It is reasonable to expect that cometary samples returned to Earth by the Stardust space probe have been altered to some degree during capture in aerogel at 6.1 km/s. In order to help interpret the measured structure of these particles with respect to their original cometary nature, a series of coal samples of known structure and chemical composition was fired into aerogel at Stardust capture velocity. This portion of the study analyzed the surfaces of aerogel‐embedded particles using Raman spectroscopy. Results show that particle surfaces are largely homogenized during capture regardless of metamorphic grade or chemical composition, apparently to include a devolatilization step during capture processing. This provides a possible mechanism for alteration of some aliphatic compound‐rich phases through devolatilization of cometary carbonaceous material followed by re‐condensation within the particle. Results also show that the possibility of alteration must be considered for any particular Stardust grain, as examples of both graphitization and amorphization are found in the coal samples. It is evident that Raman G band (~1580 cm?1) parameters provide a means of characterizing Stardust carbonaceous material to include identifying those grains which have been subjected to significant capture alteration.  相似文献   

4.
Abstract— We conducted impact experiments into SiO2‐based aerogel of uniform density (0.02 g cm?3) with spherical corundum projectiles. The highly refractory nature and mechanical strength of corundum minimizes projectile deformation and continuous mass loss by ablation that might have affected earlier experiments with soda‐lime glass (SLG) impactors into aerogel targets. We find that corundum is a vastly superior penetrator producing tracks a factor of 2.5 longer, yet similar in diameter to those made by SLG. At velocities <4 km s?1 a cylindrical “cavity” forms, largely by melting of aerogel. The diameter and length of this cavity increase with velocity and impactor size, and its volume dominates total track volume. A continuously tapering, exceptionally long and slender “stylus” emerges from this cavity and makes up some 80–90% of the total track length; this stylus is characterized by solid‐state deformations. Tracks formed below 4 km s?1 lack the molten cavity and consist only of a stylus. Projectile residues recovered from a track's terminus substantially resemble the initial impactors at V > 4 km s?1, yet they display two distinct surfaces at higher velocities, such as a blunt, forward face and a well‐preserved, hemispherical trailing side; a pronounced, circumferential ridge of compressed and molten aerogel separates these two surfaces. Stringers and patches of melt flow towards the impactor's rear where they accumulate in a characteristic melt tip. SEM‐EDS analyses indicate the presence of Al in these melts at velocities as low as 5.2 km s?1, indicating that the melting point of corundum (2054 °C) was exceeded. The thermal model of aerogel impact by Anderson and Cherne (2008) suggests actual aerogel temperatures <5000 K at comparable conditions. We therefore propose that projectile melting occurs predominantly at those surfaces that are in contact with this very hot aerogel, at the expense of viscous heating and associated ablation. Exposure to superheated aerogel may be viewed as extreme form of “flash heating.” This seems consistent with observations from the Stardust mission to comet Wild 2, such as relatively pristine interiors of rather large, terminal particles, yet total melting of most fine‐grained dust components.  相似文献   

5.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

6.
Raman spectra were acquired on a series of natural and synthetic sulfide minerals, commonly found in enstatite meteorites: oldhamite (CaS), niningerite or keilite ((Mg,Fe)S), alabandite (MnS), troilite (FeS), and daubreelite (Cr2FeS4). Natural samples come from three enstatite chondrites, three aubrites, and one anomalous ungrouped enstatite meteorite. Synthetic samples range from pure endmembers (CaS, FeS, MgS) to complex solid solutions (Fe, Mg, Ca)S. The main Raman peaks are localized at 225, 285, 360, and 470 cm?1 for the Mg‐rich sulfides; at 185, 205, and 285 cm?1 for the Ca‐rich sulfides; at 250, 370, and 580 cm?1 for the Mn‐rich sulfides; at 255, 290, and 365 cm?1 for the Cr‐rich sulfides; and at 290 and 335 cm?1 for troilite with, occasionally, an extra peak at 240 cm?1. A peak at 160 cm?1 is present in all Raman spectra and cannot be used to discriminate between the different sulfide compositions. According to group theory, none of the cubic monosulfides oldhamite, niningerite, or alabandite should present first‐order Raman spectra because of their ideal rocksalt structure. The occurrence of broad Raman peaks is tentatively explained by local breaking of symmetry rules. Measurements compare well with the infrared frequencies calculated from first‐principles calculations. Raman spectra arise from activation of certain vibrational modes due to clustering in the solid solutions or to coupling with electronic transitions in semiconductor sulfides.  相似文献   

7.
Mass-spectrometric determinations of the inert gas release from samples of the Allende carbonaceous meteorite heated in the range 300°C to 1100°C, followed by Raman spectroscopic studies of the 1360 cm?1 and 1580 cm?1 bands of carbon support the hypothesis that the gas release at high temperatures is causally related with ordering of carbon.  相似文献   

8.
We present the analyses results of two bulk Terminal Particles, C2112,7,171,0,0 and C2112,9,171,0,0, derived from the Jupiter‐family comet 81P/Wild 2 returned by the Stardust mission. Each particle embedded in a slab of silica aerogel was pressed in a diamond cell. This preparation, as expected, made it difficult to identify the minerals and organic materials present in these particles. This problem was overcome using a combination of three different analytical techniques, viz. FE‐SEM/EDS, IR, and Raman microspectroscopy that allowed identifying the minerals and small amounts of amorphous carbon present in both particles. TP2 and TP3 were dominated by Ca‐free and low‐Ca, Mg‐rich, Mg,Fe‐olivine. The presence of melilite in both particles is supported by IR microspectroscopy, but is not confirmed by Raman microspectroscopy, possibly because the amounts are too small to be detected. TP2 and TP3 show similar silicate mineral compositions, but Ni‐free and low‐Ni, subsulfur (Fe,Ni)S grains are present in TP2 only. TP2 contains indigenous amorphous carbon hot spots; no indigenous carbon was identified in TP3. These nonchondritic particles probably originated in a differentiated body. This work found an unanticipated carbon contamination following the FE‐SEM/EDS analyses. It is suggested that organic materials in the embedding silica aerogel are irradiated during FE‐SEM/EDS analyses creating a carbon gas that develops a strong fluorescence continuum. The combination of the selected analytical techniques can be used to characterize bulk Wild 2 particles without the need of extraction and removal of the encapsulating aerogel. This approach offers a relatively fast sample preparation procedure, but compressing the samples can cause spurious artifacts, viz. silica contamination. Because of the combination of techniques, we account for these artifacts.  相似文献   

9.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   

10.
Abstract— The capture in aerogel of 106 μm diameter glass beads is investigated for impact speeds of 1 to 7.5 km s?1. Three different aerogel densities were used, 60,96 and 180 kg m?3. It was found that the length of the penetration track in the aerogel increases with speed until a maximum is reached. Above the maximum speed the track length decreases. This behaviour is similar to that which has previously been observed for particles impacting polystyrene foams and porous alumina. Whilst track length was not found to be an unambiguous indicator of impact speed, the excavated track volume was found to be a suitable indictor of speed. Further, it was possible to estimate the original particle size by measurements of the track volume and entrance hole size. In addition sub‐100 μm diameter particles composed of various minerals were fired into aerogel and the characterisation of the particles in situ by use of a Raman spectrometer was evaluated. This was found to work well, giving vibrational spectra essentially similar to those of the bulk minerals, thus providing a mineralogical rather than an elemental signature for the captured particles.  相似文献   

11.
In Stardust tracks C2044,0,38, C2044,0,39, and C2044,0,42 (Brennan et al. 2007 ) and Stardust track 10 (this work) gold is present in excess of its cosmochemical abundance. Ultra‐thin sections of allocation FC6,0,10,0,26 (track 10) show a somewhat wavy, compressed silica aerogel/silica glass interface which challenges exact location identification, i.e., silica glass, compressed silica aerogel, or areas of overlap. In addition to domains of pure silica ranging from SiO2 to SiO3 glass, there is MgO‐rich silica glass with a deep metastable composition, MgO = 14 ± 6 wt%, due to assimilation of Wild 2 Mg‐silicate matter in silica melt. This magnesiosilica composition formed when temperatures during hypervelocity capture reached >2000 °C followed by ultrafast quenching of the magnesiosilica melt when it came into contact with compressed aerogel at ~155 °C. The compressed silica aerogel in track 10 has a continuous Au background as result of the melting point depression of gold particles <5 nm that showed liquid‐like behavior. Larger gold particles are scattered found throughout the silica aerogel matrix and in aggregates up to ~50 nm in size. No gold is found in MgO‐rich silica glass. Gold in track 10 is present at the silica aerogel/silica glass interface. In the other tracks gold was likely near‐surface contamination possibly from an autoclave used in processing of these particular aerogel tiles. So far gold contamination is documented in these four different tracks. Whether they are the only tiles with gold present in excess of its cosmochemical abundance or whether more tiles will show excess gold abundances is unknown.  相似文献   

12.
We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon‐bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334–1345 cm?1 and 1591–1619 cm?1. The full‐width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.  相似文献   

13.
Abstract— Metallic aluminum alloy foils exposed on the forward, comet‐facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminum alloy to record hypervelocity impacts as bowl‐shaped craters offers an opportunistic substrate for recognition of impacts by particles of a potentially wide size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild‐2, with a known and constant spacecraft‐particle relative velocity and effective surface‐perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration program, we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well‐documented particle size range from 10 μm to nearly 100 μm. Light gas gun buckshot firings of these particles at approximately 6 km s?1 onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild‐2, independent of the active impact detector instruments aboard the Stardust spacecraft.  相似文献   

14.
In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low‐density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in‐situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3‐mediated electron beam–induced etching. The porous, low‐density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy‐dispersive X‐ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.  相似文献   

15.
Abstract— Mineral particles analogous to components of cosmic dust were tested to determine if their Raman signatures can be recognized after hypervelocity capture in aerogel. The mineral particles were accelerated onto the silica aerogel by light‐gas‐gun shots. It was found that all the individual minerals captured in aerogel could be identified using Raman (or fluorescence) spectra. The laser beam spot size was ?5 micrometers, and in some cases the captured particles were of a similar small size. In some samples fired into aerogel, a broadening and a shift in the wave numbers of some of the Raman bands was observed, a result of the trapped particles being at elevated temperatures due to laser heating. Temperatures of samples were also estimated from the relative intensities of Stokes and anti‐Stokes Raman bands, or, in the case of corundum particles, from the wave number of fluorescence bands excited by the laser. The temperature varied greatly, dependent upon laser power and the nature of the particle. Most of the mineral particles examined had temperatures below 200 °C at a laser power of about 3 mW at the sample. This temperature is sufficiently low enough not to damage most materials expected to be found captured in aerogel in space. In the worst case, some particles were shown to have temperatures of 500–700 °C. In addition, selected meteorite samples were examined to obtain Raman signatures of their constituent minerals and were then shot into aerogel. It was possible to find Raman signatures after capture in aerogel and obtain a Raman map of a whole grain in situ in the aerogel. It is concluded that Raman analysis is indeed well suited for an in situ analysis of micrometer‐sized materials captured in aerogel.  相似文献   

16.
Abstract— Previous Raman investigations on experimentally shocked ingle‐crystal olivine indicated that the olivine Raman bands seemingly shift to a higher wave number with increasing shock pressure. If this effect could be confirmed, Raman analysis of natural shock‐metamorphosed minerals could potentially provide an important shock barometric tool. We carried out a Raman spectroscopic study on olivine in a series of natural dunite samples experimentally shocked to pressures between 5 and 59 GPa. In addition, we analyzed olivine grains in a sample of the Cold Bokkeveld C1 meteorite. We studied samples of several dunites with olivine of 90.64–92.00 mole% Fo to determine Raman effects in the region from 200 to 900 cm?1. Several olivine grains per sample/shock pressure stage were analyzed. Raman analysis, however, showed little or no shift with increasing shock pressure. The shifts to higher or lower frequencies observed were not specific for a given pressure stage, with some grains within a sample showing more shift than others. This finding is unrelated to the crystallographic orientation of analyzed grains and cannot be related systematically to the different degrees of optically determined shock metamorphism of the analyzed grains. We identified an increase in full width at half maximum (FWHM) for the 824 cm?1 band with increased shock pressure in the shocked Åheim samples above 45 GPa and, to a lesser extent, for the 856 cm?1 band. Evaluation of band broadening of olivine in the Cold Bokkeveld meteorite showed FWHM values that were much greater (9–20 cm?1) than those of olivine in the shocked dunite samples (7–12 cm?1). We concluded that these differences in FWHM are due to differences in chemical composition between the meteoritic and the experimentally shocked olivine. Therefore, using Raman spectroscopy to detect small shifts in wave numbers to higher frequencies with increased shock pressure does not yield consistent effects for polycrystalline dunite. An extra band at 650 cm?1 was identified in the Raman spectra of the unshocked Mooihoek dunite and the Åheim dunite samples shocked to 5, 29.3, and 59 GPa, as well as another at 696 cm?1 in all the spectra of the 59 GPa Åheim sample. The cause of these extra bands is not known. Comparison of these results with Raman spectra of olivine from the Cold Bokkeveld C1 meteorite did not allow us to determine shock pressures for the meteoritic olivine.  相似文献   

17.
Abstract— New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm?3 (similar to soda‐lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by μm‐scale and smaller sub‐grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse finegrained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.  相似文献   

18.
The chondritic‐porous subset of interplanetary dust particles (CP‐IDPs) are thought to have a cometary origin. Since the CP‐IDPs are anhydrous and unaltered by aqueous processes that are common to chondritic organic matter (OM), they represent the most pristine material of the solar system. However, the study of IDP OM might be hindered by their further alteration by flash heating during atmospheric entry, and we have limited understanding on how short‐term heating influences their organic content. In order to investigate this problem, five CP‐IDPs were studied for their OM contents, distributions, and isotopic compositions at the submicro‐ to nanoscale levels. The OM contained in the IDPs in this study spans the spectrum from primitive OM to that which has been significantly processed by heat. Similarities in the Raman D bands of the meteoritic and IDP OMs indicate that the overall gain in the sizes of crystalline domains in response to heating is similar. However, the Raman ΓG values of the OM in all of the five IDPs clearly deviate from those of chondritic OM that had been processed during a prolonged episode of parent body heating. Such disparity suggests that the nonaromatic contents of the OM are different. Short duration heating further increases the H/C ratio and reduces the δ13C and δD values of the IDP OM. Our findings suggest that IDP OM contains a significant proportion of disordered C with low H content, such as sp2 olefinic C=C, sp3 C–C, and/or carbonyl contents as bridging material.  相似文献   

19.
Helium and neon distributions are reported for a variety of Stardust comet 81P/Wild 2 samples, including particle tracks and terminal particles, cell surface and subsurface slices from the comet coma and interstellar particle collection trays, and numerous small aerogel blocks extracted from comet cells C2044 and C2086. Discussions and conclusions in several abstracts published during the course of the investigation are included, along with the relevant data. Measured isotope ratios span a broad range, implying a similar range for noble gas carriers in the Wild 2 coma. The meteoritic phase Q‐20Ne/22Ne ratio was observed in several samples. Some of these, and others, exhibit 21Ne excesses too large for attribution to spallation by galactic cosmic ray irradiation, suggesting exposure to a solar proton flux greatly enhanced above current levels in an early near‐Sun environment. Still others display evidence for a solar wind component, particularly one C2086 block with large abundances of isotopically solar‐like helium and neon. Eighty‐nine small aerogel samples were cut from depths up to several millimeters below the cell C2044 surface and several millimeters away from the axis of major track T41. A fraction of these yielded measurable and variable helium and neon abundances and isotope ratios, although none contained visible tracks or carrier particle fragments and their locations were beyond estimated penetration ranges for small particles or ions incident on the cell surface, or for lateral ejecta from T41. Finding plausible emplacement mechanisms and sources for these gases is a significant challenge raised by this study.  相似文献   

20.
Abstract– The Stardust mission captured comet Wild 2 particles in aerogel at 6.1 km s?1. We performed high‐resolution three‐dimensional imaging and X‐ray fluorescence mapping of whole cometary tracks in aerogel. We present the results of a survey of track structures using laser scanning confocal microscopy, including measurements of track volumes, entry hole size, and cross‐sectional profiles. We compare various methods for measuring track parameters. We demonstrate a methodology for discerning hypervelocity particle ablation rates using synchrotron‐based X‐ray fluorescence, combined with mass and volume estimates of original impactors derived from measured track properties. Finally, we present a rough framework for reconstruction of original impactor size, and volume of volatilized material, using our measured parameters. The bulk of this work is in direct support of nondestructive analysis and identification of cometary grains in whole tracks, and its eventual application to the reconstruction of the size, shape, porosity, and chemical composition of whole Stardust impactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号