首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275°C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln α) between 1 molal solutions and pure water at 25, 100, and 275°C are: NaCl 0.0, ?1.5, +1.0; KCl 0.0, ?1.0, +2.0; LiCl ?1.0, ?0.6, ?0.5; CaCl2 ?0.4, ?1.8, +0.8; MgCl2 ?1.1, ?0.7, ?0.3; MgSO4 ?1.1, +0.1, ?; NaF (0.8 m) 0.0, ?1.5, ?0.3; and NH4Cl (0.55 m) 0.0, ?1.2, ?1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required.  相似文献   

2.
Phase behaviour in the system diopside-jadeite (CaMgSi2O6NaAlSi2O6) have been investigated in the pressure region 100–300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. The omphacite solid solution extends from 30 to at least 200 kbar for the entire system. Omphacites, ranging in composition from pure diopside to more than 40 mole % jadeite, transform to diopside (II) at pressures greater than 230 kbar. Diopside (II), which probably possesses a perovskite-type structure, cannot be preserved when experiments are quenched to ambient conditions. Jadeite-rich omphacites were found to decompose into an assemblage of NaAlSiO4(CaFe2O4-type structure) + stishovite + diopside (II) (?) at pressures greater than about 260 kbar. These results suggest that an eclogitic model mantle would not display the 400-km seismic discontinuity. Moreover, sodium in the transition zone and lower mantle would most likely be accommodated in phases of omphacite and diopside (II).  相似文献   

3.
4.
The electrical properties of magmatic rocks (diabase and granite porphyry) from the complex dike located in the Main Caucasian (Akhtychaisk) fault zone are examined at temperatures of 100?C1000°C. It is established that the increase in the electrical conductivity from granite porphyry to diabase is caused by the decreased quartz content, increased total content of iron oxides FeO and Fe2O3, as well as the fine-grained texture of diabases and their secondary alterations. The pattern of temperature dependence of specific electrical conductivity observed in granite porphyry and diabases reflects the polymorphic transformation of the monoclinic structure to the triclinic structure (the MT-transformation), which occurs in the feldspar component of the rock. Another factor responsible for the shape of the mentioned temperature dependence is that the formation of an extrinsic mechanism of conduction is dominated by the defects (associated into complexes) in the crystal lattices of the minerals. This allows determining the energy of formation and migration of lattice defects and the energy of association of the lattice defects into complexes, which play an important role in the natural metamorphic processes. The AC measurements for the granite porphyry revealed frequency dispersion of the electrical conductivity, which decreases with increasing temperature.  相似文献   

5.
The ability of a dense pyroclastic flow to maintain high gas pore pressure, and hence low friction, during runout is determined by (1) the strengths and longevities of gas sources, and (2) the ability of the material to retain residual gas once those sources become ineffective. The latter is termed the gas retention capacity. Gas retention capacity in a defluidizing granular material is governed by three timescales: one for the evacuation of bubbles (t be ; brief and not considered in this paper), one for hindered settling from the expanded state (t sett), and one for diffusive release of residual pore pressure from the non-expanded state (t diff). The relative magnitides of t sett and t diff depend on bed thickness, t sett dominating in thin systems and t diff in thick ones. Three pyroclastic flow materials, two ignimbrites and a block-and-ash flow sample, were studied experimentally to investigate expansion behaviour under gas flow and to determine gas retention times. Effects of particle size were evaluated by using two size cuts (<4 mm and <250 μm) from each sample. Careful drying of the materials was necessary to avoid effects of humidity-related cohesion. Two sets of experiments were carried out: (1) expansion in the non-bubbling regime at 50–200°C, (2) bed collapse tests from the initially bubbling state at 50–550°C. Provided that gas channelling was avoided by gentle stirring, all the samples exhibited a regime of uniform expansion prior to the onset of bubbling. Fine particle size (in particular high fines content), low particle density and high temperature all favoured smoother fluidization by increasing the maximum expansion possible in the non-bubbling state. An empirical equation describing the uniform expansion of the materials was determined. High temperature also favoured greater gas partitioning into the dense phase of the bubbling bed, as well (in finer-grained samples) as higher voidage in the settled bed. Large values of t sett and t diff were favoured by fine particle size. Temperature had less influence, suggesting that experimental results at low temperatures (50–200°C) can be extrapolated to higher temperatures. Gas retention times provide insight into the ability of pyroclastic flows in expanded (t sett) or non-expanded (t diff) flow states to retain gas once air ingestion or gas production have become ineffective. Finer-grained pyroclastic flows are expected to retain gas longer, and hence to have higher apparent ‘mobilities’, than coarser-grained ones of comparable volume, as has been observed on Montserrat.  相似文献   

6.
Understanding how the strength of basaltic rock varies with the extrinsic conditions of stress state, pressure and temperature, and the intrinsic rock physical properties is fundamental to understanding the dynamics of volcanic systems. In particular it is essential to understand how rock strength at high temperatures is limited by fracture. We have collated and analysed laboratory data for basaltic rocks from over 500 rock deformation experiments and plotted these on principal stress failure maps. We have fitted an empirical flow law (Norton’s law) and a theoretical fracture criterion to these data. The principal stress failure map is a graphical representation of ductile and brittle experimental data together with flow and fracture envelopes under varying strain rate, temperature and pressure. We have used these maps to re-interpret the ductile–brittle transition in basaltic rocks at high temperatures and show, conceptually, how these failure maps can be applied to volcanic systems, using lava flows as an example.  相似文献   

7.
New and improved techniques and apparatus for testing the mechanical properties of materials at high presures and temperatures are described. These include an improved Griggs-type deformation apparatus designed to operate to 5 GPa and associated servo-controlled hydraulic drive and electronics, the design of hydrostatic (molten alkali halide mixtures) pressure assemblies to measure flow stresses as low as a few MPa, the characterization of temperature gradients and friction in such assemblies, measurement of the melting curve of an alkali halide mixture used as a confining pressure medium, and the measurement of acoustic emissions.  相似文献   

8.
Mechanical properties of rocks change under the influence of, temperature. Stress at the onset of yielding, ultimate strength, dilatancy, strain hardening and softening, and the confining pressure at brittle-ductile transition are all reduced by the increasing temperature. This study presents a framework of constitutive modeling of thermo-brittle-plastic behavior of rocks which encompasses these changes. The constitutive law is based on a thermo-plasticity theory first proposed for metals byPrager (1958). Two phenomenological mechanisms have been identified as central for the modeling: temperature dependence of the yield locus (thermal softening), and temperature dependence of the strain-hardening function (thermally enhanced ductility). Material parameters for two rocks, Carrara marble and Westerly granite, were determined on the basis of additional hypotheses. These parameters are used in numerical simulations of triaxial tests at different temperatures. The obtained stress-strain curves compare well to the experimental results. The changes with temperature in the stress at the onset of yielding are more accurately reproduced that the evolution of hardening or softening. Suggestions for possible improvements and future research directions are indicated.  相似文献   

9.
Increasing use is being made of sulphide minerals in isotope geothermometry. Sulphur isotope fractionation factors for34S exchange between sphalerite (ZnS) and galena (PbS) have been calculated for various temperatures between 0 and 1000°C. The reduced partition function ratios have been calculated using a “shell” model for the forces derived from inelastic neutron scattering studies of the lattice dynamics of sphalerite and galena. A new formalism of the current theory has been developed which enables the accuracy of the calculation to be determined.The Zn34S—Pb34S equilibrium constant obtained by the shell model calculations is 1.0060 to 100°C, 1.0031 at 250°C and 1.0005 at 1000°C, in agreement with experimental determinations.  相似文献   

10.
The studies on the physical properties of minerals and rocks in combination with the work in petrology, mineralogy and geochemistry are not only a useful mean to look into the composition and structure of the earth抯 interior, but also can provide extreme…  相似文献   

11.
Elastic wave velocity measurement in rocks at high pressures and high temperatures plays a key role in researching the state, properties and movement of the earth interior materials. Nowadays dehydration is believed to be as one of the most important reasons responsible for the abnormality of seismic velocity (Kern, 1982; Ito, 1990; Christensen, 1989; Popp, Kern, 1993; SONG, et al, 1996; ZHOU, 1998; ZHAO, et al, 1996). Geophysical, geochemical and mineralogical data have revealed that on…  相似文献   

12.
High-pressure phase transformations for three intermediate compositions (including diopside) in the system enstatite (MgSiO3)-wollastonite (CaSiO3) were investigated in the pressure range 100–300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. The phase behaviour of the two end components (enstatite and wollastonite) at high pressure has been reported earlier. The results of this study reveal that there is very limited solid solution of diopside (CaMgSi2O6) in the various high-pressure phase assemblages of enstatite. At pressures greater than about 200 kbar, diopside and a composition between diopside and wollastonite were found to transform into non-quenchable phases, as does wollastonite. It is thought probable that diopside and wollastonite form solid solutions with the perovskite structure at high pressure, but that on release of pressure it is not possible to preserve the high-pressure modification.  相似文献   

13.
14.
The coercivity spectrum of low-field high-temperature partial thermoremanent magnetization (PTRM) of a synthetic hematite powder, extremely high at room temperature, decreases very slowly with increasing temperature up to 500°C then decreases rapidly, especially above 600°C. From the AF demagnetization curves at 600 and 650°C it is calculated, following the Néel's theory of single-domain particles that the grains carrying the PTRM have a mean coercive force of 23 ± 5 kOe and a mean grain size of 0.40 ± 0.15 μm, which is not significantly different from the mean grain size of 0.48 ± 0.03 μm from electron micrograph observations.  相似文献   

15.
Ferromagnesian silicate olivines, pyroxenes and garnets with Mg/(Mg + Fe)?0.3 (molar) have been found to transform to high-pressure phases characterized by the orthorhombic perovskite structure when compressed to pressures above 250 kbar in a diamond-anvil press and heated to temperatures above 1,000°C with a YAG laser. The zero-pressure density of the perovskite phase of (Mg,Fe)SiO3 is about 3–4% greater than that of the close-packed oxides, rocksalt plus stishovite. For (Mg,Fe)2SiO4 compounds, the perovskite plus rocksalt phase assemblage is 2–3% denser than the mixed oxides. The experimental synthesis of such high-density perovskite phases in olivine, pyroxene and garnet compounds suggests that (Mg,Fe)SiO3-perovskite is the dominant mineral phase in the earth's lower mantle.  相似文献   

16.
Recent measurements have shown that the magnetic coercive forces of some Apollo lunar samples show an un-expected decrease with decreasing temperature at cryogenic temperatures. This behavior can be explained quantitatively in terms of a model which considers additive contributions from a soft, reversible magnetic phase and from a harder, hysteretic magnetic phase.  相似文献   

17.
Iron isotope fractionation during planetary differentiation   总被引:4,自引:0,他引:4  
The Fe isotope composition of samples from the Moon, Mars (SNC meteorites), HED parent body (eucrites), pallasites (metal and silicate) and the Earth's mantle were measured using high mass resolution MC-ICP-MS. These high precision measurements (δ56Fe ≈ ± 0.04‰, 2 S.D.) place tight constraints on Fe isotope fractionation during planetary differentiation.Fractionation during planetary core formation is confined to < 0.1‰ for δ56Fe by the indistinguishable Fe isotope composition of pallasite bulk metal (including sulfides and phosphides) and olivine separates. However, large isotopic variations (≈ 0.5‰) were observed among pallasite metal separates, varying systematically with the amounts of troilite, schreibersite, kamacite and taenite. Troilite generally has the lightest (δ56Fe ≈ − 0.25‰) and schreibersite the heaviest (δ56Fe ≈ + 0.2‰) Fe isotope composition. Taenite is heavier then kamacite. Therefore, these variations probably reflect Fe isotope fractionation during the late stage evolution and differentiation of the S- and P-rich metal melts, and during low-temperature kamacite exsolution, rather than fractionation during silicate-metal separation.Differentiation of the silicate portion of planets also seems to fractionate Fe isotopes. Notably, magmatic rocks (partial melts) are systematically isotopically heavier than their mantle protoliths. This is indicated by the mean of 11 terrestrial peridotite samples from different tectonic settings (δ56Fe = + 0.015 ± 0.018‰), which is significantly lighter than the mean of terrestrial basalts (δ56Fe = + 0.076 ± 0.029‰). We consider the peridotite mean to be the best estimate for the Fe isotope composition of the bulk silicate Earth, and probably also of bulk Earth. The terrestrial basaltic mean is in good agreement with the mean of the lunar samples (δ56Fe = + 0.073 ± 0.019‰), excluding the high-Ti basalts. The high-Ti basalts display the heaviest Fe isotope composition of all rocks measured here (δ56Fe ≈ + 0.2‰). This is interpreted as a fingerprint of the lunar magma ocean, which produced a very heterogeneous mantle, including the ilmenite-rich source regions of these basalts.Within uncertainties, samples from Mars (SNC meteorites), HED (eucrites) and the pallasites (average olivine + metal) have the same Fe isotope compositions as the Earth's mantle. This indicates that the solar system is very homogeneous in Fe isotopes. Its average δ56Fe is very close to that of the IRMM-014 standard.  相似文献   

18.
Experiments on the solubility of FeO in molten iron have been carried out at temperatures between 2100 and 2550°C. The results show that liquid FeO is extensively soluble in molten iron at 2500°C and indicate that they probably become completely miscible above 2800°C. Liquid iron in equilibrium with crystalline magnesiowüstite (Mg0.8Fe0.2)O which is believed to be an important mineral in the lower mantle, would dissolve about 14 mol.% of FeO at 2500°C and 40 mol.% of FeO at 2800°C. The geochemical implications of these results are discussed. It is concluded that the outer core probably contains a large amount of dissolved FeO and that oxygen is probably the principal light element in the outer core.  相似文献   

19.
Recently obtained data on oxygen diffusion in feldspars, quartz, and hornblende permit the prediction of the apparent18O16O temperatures that would be measured in a rock that consisted only of those three minerals, and cooled slowly from high temperature. The computed temperatures would be based on the differences in the18O16O ratios between coexisting pairs of minerals. The present calculation takes into account the diffusion rates for oxygen as a function of temperature, the cooling rate of the rock, the mineral grain sizes, and the mode of the rock. For mineral grains 1 mm in radius, and a cooling rate of 10°C/m.y., the minimum difference in apparent temperature between quartz-feldspar and feldspar-hornblende pairs will be 115°C, despite the assumption of a normal, uneventful, slow cooling history to room temperature. Further, the apparent quartz-hornblende temperature will range over 30°C (590–620°C) depending on the mode of the rock. For a cooling rate of 1000°C/m.y., the apparent difference in temperature can be as much as 400°C. Consequently, consistency in temperatures obtained by oxygen isotope analysis should not be expected in most high-grade metamorphic rocks or igneous rocks which are cooled slowly. Departures from the pattern of temperatures obtained in this model would imply a very rapid quench from high temperature, or a complex history for the rock. For some minerals, including hornblende, the relation between temperature and the equilibrium fractionation of oxygen isotopes between coexisting phases has been derived from observed relations in natural specimens. The choice of the specimens used for such calibrations needs to be re-evaluated in light of these findings. This may result in a change in the equilibrium equation constants.An example from the literature, the San Jose tonalite, Baja California, Mexico, was modelled and yieldsδ18O concentrations in the minerals that correspond closely with the measured values. This suggests that the model used is appropriate, that the rock has had a simple thermal history, and that it cooled at 100–200°C/m.y. over the temperature range 800–500°C. The set of paleotemperatures obtained for a rock will, in general, yield neither the mineral closure temperatures nor the formation or crystallization temperatures. On the other hand, the cooling rate of the rock may be derived from the data. This, in turn, may have important tectonic implications with regard to denudation and uplift rates.  相似文献   

20.
Spectra of internal friction between 2 and 8 Hz were studied in a single crystal of enstatite, in a polycrystal of synthetic forsterite and in several samples of natural peridotite. Measurements of Q?1 and μ were performed in vacuum (10?6 torr), from room temperature up to 1100°C. For these experimental conditions no peak was observed in the polycrystalline undeformed forsterite, but the background attenuation irregularly increased from 5 · 10?3 to 10?2.A peak Q?1 = 7 · 10?2 appears in a deformed peridotite at 930°C. It is reduced of 60% after 5 h of annealing at 1100°C. But the background attenuation persists. In the single crystal of enstatite, a peak is observed at 760°C (Q?1 = 6 · 10?2). A mechanism involving dislocations is suggested as a possible explanation for the peak obtained with the peridotite samples. If this hypothesis is right, the observed effect would be diffusion controlled so that one can expect pressure to translate it towards higher temperature. This mechanism could therefore appear in the upper mantle. Background attenuation could be the result of intergranular thermal losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号