首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abundances and isotopic compositions of all the stable noble gases have been measured in 19 different depths of the Apollo 15 deep drill core, 7 different depths of the Apollo 16 deep drill core, and in several surface fines and breccias. All samples analyzed from both drill cores contain large concentrations of solar wind implanted gases, which demonstrates that even the deepest layers of both cores have experienced a lunar surface history. For the Apollo 15 core samples, trapped4He concentrations are constant to within a factor of two; elemental ratios show even greater similarities with mean values of4He/22Ne= 683±44,22Ne/36Ar= 0.439±0.057,36Ar/84Kr= 1.60±0.11·103, and84Kr/132Xe= 5.92±0.74. Apollo 16 core samples show distinctly lower4He contents,4He/22Ne(567±74), and22Ne/36Ar(0.229±0.024), but their heavy-element ratios are essentially identical to Apollo 15 core samples. Apollo 16 surface fines also show lower values of4He/22Ne and22Ne/36Ar. This phenomenon is attributed to greater fractionation during gas loss because of the higher plagioclase contents of Apollo 16 fines. Of these four elemental ratios as measured in both cores, only the22Ne/36Ar for the Apollo 15 core shows an apparent depth dependance. No unambiguous evidence was seen in these core materials of appreciable variations in the composition of the solar wind. Calculated concentrations of cosmic ray-produced21Ne,80Kr, and126Xe for the Apollo 15 core showed nearly flat (within a factor of two) depth profiles, but with smaller random concentration variations over depths of a few cm. These data are not consistent with a short-term core accretion model from non-irradiated regolith. The Apollo 15 core data are consistent with a combined accretion plus static time of a few hundred million years, and also indicate variable pre-accretion irradiation of core material. The lack of large variations in solar wind gas contents across core layers is also consistent with appreciable pre-accretion irradiation. Depth profiles of cosmogenic gases in the Apollo 16 core show considerably larger concentrations of cosmogenic gases below ~65 cm depth than above. This pattern may be interpreted either as an accretionary process, or by a more recent deposition of regolith to the upper ~70 cm of the core. Cosmogenic gas concentrations of several Apollo 16 fines and breccias are consistent with ages of North Ray Crater and South Ray Crater of ~50·106 and ~2·106 yr, respectively.  相似文献   

2.
Oxygen isotope measurements of phosphate from fish teeth and bones   总被引:2,自引:0,他引:2  
In situ measurements of lunar surface brightness temperatures made as a part of the Apollo Lunar Surface Experiments Package at the Apollo 15 Hadley Rille landing site are reported. Data derived from 5 thermocouples of the Heat Flow Experiment, which are lying on or just above the surface, are used to examine the thermal properties of the upper 15 cm of the lunar regolith using eclipse and nighttime cool-down temperatures. Application of finite-difference techniques in modeling the lunar soil shows the thermocouple data are best fit by a model consisting of a low-density and low-thermal conductivity surface layer approximately 2 cm thick overlying a region increasing in conductivity and density with depth. Conductivities on the order of 1 × 10?5 W/cm-°K are postulated for the upper layer, with conductivity increasing to the order of 1 × 10?4 W/cm-°K at depths exceeding 20 cm. An increase in mean temperature with depth indicates that the ratio of radiative to conductive transfer at 350°K is 2.7 for at least the upper few centimeters of lunar soil; this value is nearly twice that measured for returned lunar fines. The thermal properties model deduced from Apollo 15 surface temperatures is consistent with earth-based microwave observations if electrical properties measured on returned lunar fines are assumed.  相似文献   

3.
Bulk compositions of igneous and microbreccia lithic fragments, glasses, and chondrules from Luna 16 fines as well as compositions of minerals in basaltic lithic fragments were determined with the electron microprobe. Igneous lithic fragments and glasses are divided into two groups, the anorthositic-noritic-troctolitic (hereafter referred to as ANT) and basaltic groups. Chondrules are always of ANT composition and microbreccia lithic fragments are divided into groups 1 and 2. The conclusions reached may be summarized as follows: (1) Luna 16 fines are more similar in composition to Apollo 11 than to Apollo 12 and 14 materials (e.g. Apollo 11 igneous lithic fragments and glasses fall into similar ANT and basaltic groups; abundant norites in Luna 16 and Apollo 11 are not KREEP as in Apollo 12 and 14; Luna 16 basaltic lithic fragments may represent high-K and low-K suites as is the case for Apollo 11; rare colorless to greenish, FeO-rich and TiO2-poor glasses were found in both Apollo 11 and Luna 16; Luna 16 spinels are similar to Apollo 11 spinels but unlike those from Apollo 12). (2) No difference was noted in the composition of lithic fragments, glasses and chondrules from Luna 16 core tube layers A and D. (3) Microbreccia lithic fragments of group 1 originated locally by mixing of high proportions of basaltic with small proportions of ANT materials. (4) Glasses are the compositional analogs to the lithic fragments and not to the microbreccias; most glasses were produced directly from igneous rocks. (5) Glasses show partial loss of Na and K due to vaporization in the vitrification process. (6) Luna 16 chondrules have ANT but not basaltic composition. It is suggested that either liquid droplets of ANT composition are more apt to nucleate from the supercooled state; or basaltic droplets have largely been formed in small and ANT droplets in large impact events (in the latter case, probability for homogeneous and inhomogeneous nucleation is larger. (7) No evidence for ferric iron and water-bearing minerals was found. (8) Occurrence of a great variety of igneous rocks in Luna 16 samples (anorthosite, noritic anorthosite, anorthositic norite, olivine norite, troctolite, and basalt) confirm our earlier conclusion that large-scale melting or partial melting to considerable depth and extensive igneous differentiation must have occurred on the moon.  相似文献   

4.
The Apollo 11 soil breccias are samplers of the ancient lunar environment due to their history in the regolith and their efficient closure to addition of recent solar wind upon compaction. These breccias contain the lowest15N/14N isotopic ratio yet reported for any lunar sample (in fact, for any natural sample). This extends the range of variation of15N/14N of the solar wind to greater than 30%, from a δ15N of ?190‰ in the past to +120‰ at present. No mechanism is yet known that is capable of accounting for such a large change in the15N/14N ratio without producing a substantial concomitant change in the13C/12C ratio, although some sort of nuclear reaction in the sun appears to be required. Apollo 11 soil breccias and 15086 are all formed by meteoritic impacts which compact the lower regolith against the basement rock without much heating. Rock 15086 formed from the layer of regolith between 100 and 200 cm depth, as shown by the close agreement between the nitrogen content and isotopic ratios of 15086 and those of the Apollo 15 deep drill core. Cosmic ray exposure ages, based on spallation-produced15N, are 2.3 ± 0.4 b.y. for Apollo 11 breccias. This age is much greater than the estimate from cosmogenic21Ne, presumably due to diffusive loss of neon.  相似文献   

5.
Track densities in feldspar crystals from L16A14 and L16G14 (6–8 cm and 29-21 cm) range from 2.5 × 108/cm2 to > 2 × 109/cm2. No significant difference is found between the two positions. The track densities are similar to those observed in heavily irradiated samples of Apollo 11, 12 and 14 and indicate that these two positions are composed of well mixed materials from a number of sources. This is in contrast to a number of fines samples from Apollo 12 and 14 which are less irradiated and represent relatively recent additions to the lunar surface.  相似文献   

6.
A review of cratering data and available semi-empirical calculations suggests that the variation of ejecta thickness,t, with increasing range from lunar craters may be approximately modelled by the expression: t=0.14R0.74(r/R?3.0 wherer is range from the center of the crater andR, the crater radius, all in meters. This equation has been used to estimate the thickness of ejecta deposits at each of the Apollo sites contributed from the large multi-ringed frontside lunar basins. Predicted average thickness of Imbrium ejecta at Apollo 15 is 812 m; at Apollo 14, 130 m; at Apollo 17, 102 m; and at Apollo 16, 50 m. Since the sequence of formation of these basins is known, the stratigraphic column resulting from superimposed ejecta blankets can be calculated. Results suggest that pre-Nubium crustal material at upland Apollo sites lies at depths greater than 280 (Apollo 14) to 1940 m (Apollo 17). Predicted stratigraphic sections for the Apollo sites are tabulated.  相似文献   

7.
18O/16O ratios have been measured for Luna 20 and Apollo 15 fines and Apollo 15 rocks.Isotopic composition and fractionation between minerals are compared with previous results.Partial fluorination experiments on Luna 20 soil and Apollo 15021 extreme fines show large18O enrichments in grain surfaces. These results are discussed.  相似文献   

8.
A total of 139 breccia and crystalline rock fragments in the size range 2–4 mm from four Apollo 15 soil samples have been examined. Two of the sample stations are on the mare surface (4 and 9A) and two are on the Apennine Front (2 and 6). Approximately 90% of the fragments from the Apennine Front are brown-glass “soil” breccias, but those from the mare surface are 60%–70% basalt. Several textural varieties of mare basalt have been recognized, but within experimental error there is no difference in their40Ar-39Ar ages. The major non-mare (Pre-Imbrian) crystalline rock types in the Apennine Front regolith are KREEP basalt, anorthositic rocks, recrystallized norite (including anorthositic norite) and recrystallized polymict breccias; however, such crystalline rocks are rare in the samples examined. Apparently, the near surface Imbrium ejecta below the regolith has not been thermally recrystallized, and probably there are no outcrops of crystalline rocks upslope from the sample stations.  相似文献   

9.
Apollo 15 and 16 subsatellite measurements of lunar surface magnetic fields by the electron reflection method are summarized. Patches of strong surface fields ranging from less than 14° to tens of degrees in size are found distributed over the lunar surface, but in general no obvious correlation is observed between field anomalies and surface geology. In lunar mare regions a positive statistical correlation is found between the surface field strength and the geologic age of the surface as determined from crater erosion studies. However, there is a lack of correlation of surface field with impact craters in the mare, implying that mare do not have a strong large-scale uniform magnetization as might be expected from an ancient lunar dynamo. This lack of correlation also indicates that mare impact processes do not generate strong magnetization coherent over ~ 10 km scale size. In the lunar highlands fields of >100 nT are found in a region of order 10 km wide and >300 km long centered on and paralleling the long linear rille, Rima Sirsalis. These fields imply that the rille has a strong magnetization (>5 × 10?6 gauss cm3 gm?1 associated with it, either in the form of intrusive, magnetized rock or as a gap in a uniformly magnetic layer of rock. However, a survey of seven lunar farside magnetic anomalies observed by the Apollo 16 subsatellite suggests a correlation with inner ejecta material from large impact basins. The implications of these results for the origin of lunar magnetism are discussed.  相似文献   

10.
Measurements of cosmic-ray produced53Mn are reported for a series of lunar surface samples down to a depth of 416 g/cm2. These results clearly illustrate the decrease in activity with depth as the incident galactic cosmic rays are absorbed. Below 60 g/cm2 the production rate decreases exponentially with a mean length, λ, of about 220 g/cm2. These results indicate that, at the Apollo 15 site, the lunar regolith has been unmixed, on a meter scale, for the last 5 my. The neutron activation technique for53Mn, which allowed samples smaller than 200 mg to be used for these measurements, is described.  相似文献   

11.
Luna 16 sample B-1 was the largest fragment (62 mg) obtained in the sample exchange with the USSR. Petrologic, mineralogic, and chemical investigations have been made on this fragment in conjunction with Rb-Sr and40Ar/39Ar investigations by our colleagues. Sample B-1 is a fine-grained ophitic basalt but is distinguished from the Apollo samples by containing a single pyroxene, predominantly pigeonitic, an ilmenite content (7%) intermediate to that of the Apollo 11 and 12 samples, and subequal amounts of pyroxene (50%) and plagioclase (40%). Chemically it is distinguished by a high Sr content (437 ppm) and a high K/U value (4700). The K-content (1396 ppm) is higher than that of Luna 16 soil sample A-2.  相似文献   

12.
The depth profile of the neutron-induced fission rate of235U was directly measured to a depth of 350 g/cm2 by the Apollo 17 Lunar Neutron Probe Experiment. The fission rate rises sharply from the surface to a broad maximum from 110 to 160 g/cm2 and drops off at greater depths. The shape of theoretical depth profile of Lingenfelter et al. fits the measured capture rates well at all depths. The absolute magnitude of the experimental fission rates are (11±17)% lower than those calculated theoretically. The excellent agreement between theory and experiment implies that conclusions drawn previously by interpreting lunar sample data with the theoretical capture rates will not require revision. In particular lunar surface processes, rather than uncertainties in the capture rates, are required to explain the relatively low neutron fluences observed for surface soil samples compared to the fluences expected for a uniformly mixed regolith.  相似文献   

13.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The activity of solar cosmic-ray-produced53Mn has been measured as a function of depth in the upper 100 g/cm2 (~55 cm) of lunar cores 60009–60010 and 12025–12028. Additional samples which supplement our earlier work were analyzed from the Apollo 15 and 16 drill stems. These data, taken in conjunction with our previously published results and the22Na and26Al data of the Battelle Northwest group, indicate that in at least three of the four cases studied the regolith has been measureably disturbed within the last 10 m.y. In one case gardening to 19 g/cm2 is required. Activities measured in the uppermost 2 g/cm2 indicate frequent mixing within this depth range. No undisturbed profiles were observed nor were any major discontinuities observed in the profiles. The Monte Carlo gardening model of Arnold has been used to derive profiles for the gardened moon-wide average of53Mn and26Al as a function of depth. The53Mn and26Al experimental results are compared with these theoretical predictions. Agreement is good in several respects, but the calculated depths of disturbance appear to be too low.  相似文献   

15.
Surface infiltration and internal drainage properties of five soil types from arid drylands of South Africa were studied under double ring infiltrometer, rainfall simulation plots (1 m2) and instantaneous drainage plots (9 m2). Changes in soil water content during 40 minute rainfall simulation for a rainstorm with average intensity of 1.61 mm min?1 and 30 day drainage period were measured at various depths by 1.5 m long capacitance soil water measuring (DFM) probe. Different (P < 0.05) mean surface steady infiltration rate ranged from 0.05 to 4.47 mm min?1 and had a negative power relationship (R 2 = 0.65) with horizon clay plus fine silt content. Power regression (R 2 ≥ 86%) described rainstorm infiltration and obtained steady rates within an average time of 15 minutes. Mean total infiltrated soil water content was lowest (P < 0.05) from surface horizons with either 47.7% clay plus fine silt content or bulk density of 1.91 g cm?3 and exchangeable sodium of not less than 44 mg kg?1. Surface horizons with lower surface bulk density and total sand fraction of more than 72% had infiltrated depth and mean total infiltrated soil water content up to 40 cm deeper and 0.55 mm mm?1 greater, respectively. Drainage rate at drained upper limit calculated from the Wilcox drainage model (R 2 ≤ 0.97%) was 0.2 mm day?1 or less were from underlying horizons with either clay plus fine silt of 45% or soft calcium carbonate. Higher drainage rate with accumulative drainage amount greater than 60 mm were from soil profile horizons with clay plus fine silt content of less than 20% and above unity steady infiltration rates. Rainstorm infiltration and drainage rates was shown to depend on permeability and coarseness of the respective soil surface and subsurface horizons; a phenomenon critical for harnessing rain and flood water to recharge groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Ocean Drilling Program Site 658 lies under the North African summer dust plume, and ought to be an ideal target for optically stimulated luminescence (OSL) dating, since the main clastic input is far-travelled Saharan dust. However, OSL ages for coarse silt-sized quartz (40–63 μm) are systematically lower than independent age estimates when dose rates are calculated using a model which assumes detrital 238U, 232Th and 40K and excess 230Th and 231Pa. Ages which are in good agreement with independent age control are obtained from the coarse silt samples when a correction for authigenic uranium uptake is incorporated into the dose rate model. Authigenic uranium uptake occurs under reducing conditions, which are common at the sediment–water interface, and some degree of authigenic uranium correction may be required for most marine sediments. Using this revised dose rate model, ages produced using fine silt-sized quartz (4–11 μm) are up to 100% older than both independent and coarse silt ages. In addition, the fine silt ages show a consistent pattern of age decrease with depth over 1.5 m of core. 230Th data from Site 658 indicate that this site receives 3 times more sediment laterally than vertically. It is concluded that the fine silt at Site 658 contains a substantial reworked component, making it unsuitable for dating. Conversely the coarse silt fraction, which settles through water at ∼40 times the rate of fine silt, appears to be derived from dust input over the site at the time of deposition. Since prominent nepheloid (cloudy) layers occur in various deep ocean basins, and the material suspended in these layers often consists of reworked fine silt-sized sediments, coarser material should be dated where possible.  相似文献   

17.
A summary of experiments and analyses concerning electromagnetic induction in the Moon and other extraterrestrial bodies is presented. Magnetic step-transient measurements made on the lunar dark side show the eddy current response to be the dominant induction mode of the Moon. Analysis of the poloidal field decay of the eddy currents has yielded a range of monotonic conductivity profiles for the lunar interior: the conductivity rises from 3·10?4 mho/m at a depth of 170 km to 10?2 mho/m at 1000 km depth. The static magnetization field induction has been measured and the whole-Moon relative magnetic permeability has been calculated to be μμ0 = 1.01 ± 0.06. The remanent magnetic fields, measured at Apollo landing sites, range from 3 to 327 γ. Simultaneous magnetometer and solar wind spectrometer measurements show that the 38-γ remanent field at the Apollo 12 site is compressed to 54 γ by a solar wind pressure increase of 7·10?8 dyn/cm2. The solar wind confines the induced lunar poloidal field; the field is compressed to the surface on the lunar subsolar side and extends out into a cylindrical cavity on the lunar antisolar side. This solar wind confinement is modeled in the laboratory by a magnetic dipole enclosed in a superconducting lead cylinder; results show that the induced poloidal field geometry is modified in a manner similar to that measured on the Moon. Induction concepts developed for the Moon are extended to estimate the electromagnetic response of other bodies in the solar system.  相似文献   

18.
Geochemical and textural investigations have been simultaneously performed on spinel-lherzolite xenoliths from the Oligo-Miocene alkali basalts of Montferrier (southern France).All the investigated samples have undergone a deformation very particular by intense shearing under high stresses (up to 1.75 kbar), low temperatures ( 900°C) and strain rates of about 10−18 to 10−15 s−1.Mineral chemistry reveals that the Montferrier lherzolites are fragments of an undepleted relatively shallow upper mantle level located at a depth of 50 km (15 kbar). Moreover, Na and Ti enrichment in diopside would reflect a metasomatic event, also emphasized by the common occurrence of pargasite in 50–70% of the investigated samples.Crystallization of this amphibole is attributed to a hydrous infiltration which is related in time and space to the deformation. Indeed, amphibole is preferentially concentrated in strongly deformed zones and in kink-band boundaries of orthopyroxene porphyroclasts. Moreover, the grain boundaries were used by the pervasive agent to percolate into the lherzolite: significant chemical variations (increase in MgO: 15% and decrease in Al2O3: 55%) are observed within the range of 7–5 μm adjacent to the grain boundary.Finally, Sr isotopic data (87Sr/86Sr) demonstrate that the amphibole, i.e. the metasomatic agent, is genetically related to the host lava of the xenoliths. Thus, the hydrous silicate liquid from which the amphibole has crystallized may be an early percolation of the ascending alkali magma.This silicate liquid hydrated the shear zone, located at a depth of 50 km, induced the hydraulic fracturation of the lherzolite and the magmatic conduit opening. Subsequently, the alkali magma sampled some fragments of this strongly deformed and metasomatized undepleted upper mantle level and brought them to the surface.  相似文献   

19.
Polymict samples can be used to establish mass-balance constraints regarding the bulk composition of the lunar crust, and to gauge the degree of regional heterogeneity in the composition of the lunar crust. The most ideally polymict type of sample is finely-mixed regolith (lunar soil), or its lithified equivalent, regolith breccia. Fortunately, lunar regolith breccias can occasionally be found at great distances from their points of origin — most of the known lunar meteorites are regolith breccias. We are searching for examples of exotic regolith samples among the Apollo regolith breccia collection. Most of the 21 Apollo regolith breccias analyzed for this study strongly resemble the local soils over which they were collected. Nine regolith breccias from Apollo 16 are surprisingly mature compared to previously-analyzed Apollo 16 regolith breccias, and six of the seven from Apollo 16 Station 5 have lower, more local-soil-like,mg ratios than previously analyzed regolith breccias from this station. Several of the Apollo 14 regolith breccias investigated show significantly highermg, and lower Al, than the local soils.The most interesting sample we have investigated is 14076,1, from a lithology that constitutes roughly half of a 2.0-g pebble. The presence of spherules indicates a regolith derivation for 14076,1, yet its highly aluminous (30 wt.% Al2O3) composition is clearly exotic to the 1.6-km traverse surface over which the Apollo 14 samples were collected. This sample resembles soils from the Descartes (Apollo 16) highlands far more than it does any other polymict sample from the Fra Mauro (Apollo 14) region. The I/sFeO maturity index is extremely low, but this may be a result of thermal annealing. A variety of siderophile elements occur in 14076,1 at typical regolith concentrations. The chemistry of the second most aluminous regolith sample from Apollo 14, 14315, can only be roughly approximated as a mixture of local regolith and 14076,1-like material. However, the low a priori statistical probability for long-distance horizontal transport by impact cratering, along with the relatively high contents of incompatible elements in 14076,1 (despite its high Al content), suggest that this regolith breccia probably originated within a few hundred kilometers of the Appollo 14 site. If so, its compositional resemblance to ferroan anorthosite tends to suggest that the regional crust is, or originally was, far richer in ferroan anorthosite than implied by the meager statistics for pristine rocks from this site. Thus, 14076,1 tends to strengthen the hypothesis that ferroan anorthosite originated as the flotation crust of a global magmasphere.  相似文献   

20.
An interpretation of previously reported measurements of the Apollo 15/16 alpha-particle spectrometer on the distribution of 222Rn and 210Po across the lunar surface suggests that continuation of these measurements is a method of monitoring current activity on the moon. Since the two isotopes are relatively short-lived with effective half-lives of 3 days and 21 years, respectively, the activity detected has had to have been released during this current epoch. Changes in the rate of lunar emanation can be measured on three different time scales: (1) of a few days or less by detecting 222Rn at discrete sites such as the crater Aristarchus; (2) of a month by measuring 222Rn activity at the sunrise terminator; (3) of a few years by measuring 210Po activity at various locations. These observations could be carried out very effectively from a lunar polar orbiting satellite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号