首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Northwest Africa (NWA) 1950 is a new member of the lherzolitic shergottite clan of the Martian meteorites recently found in the Atlas Mountains. The petrological, mineralogical, and geochemical data are very close to those of the other known lherzolitic shergottites. The meteorite has a cumulate gabbroic texture and its mineralogy consists of olivine (Fo66 to Fo75), low and high‐Ca pyroxenes (En78Fs19Wo2‐En60Fs26W14; En53Fs16Wo31‐En45Fs14Wo41), and plagioclase (An57Ab41Or1 to An40Ab57Or3; entirely converted into maskelynite during intense shock metamorphism). Accessory minerals include phosphates (merrillite), chromite and spinels, sulfides, and a glass rich in potassium. The oxygen isotopic values lie on the fractional line defined by the other SNC meteorites (Δ17O = 0.312 %o). The composition of NWA 1950 is very similar to the other lherzolitic shergottites and suggests an origin from the same magmatic system, or at least crystallization from a close parental melt. Cosmogenic ages indicate an ejection age similar to those of the other lherzolitic shergottites. The intensity of the shock is similar to that observed in other shergottites, as shown by the occurrence of small melt pockets containing glass interwoven with stishovite.  相似文献   

2.
Shergottites have provided abundant information on the volcanic and impact history of Mars. Northwest Africa (NWA) 14672 contributes to both of these aspects. It is a vesicular ophitic depleted olivine–phyric shergottite, with average plagioclase An61Ab39Or0.2. It is highly ferroan, with pigeonite compositions En49-25Fs41-61Wo10-14 like those of basaltic shergottites, for example, NWA 12335. Olivine (Fo53-15) has discrete ferroan overgrowths, more ferroan when in contact with plagioclase than when enclosed by pyroxene. The pyroxene (a continuum of augite, subcalcic augite, and pigeonite) is patchy, with ragged “cores” enveloped or invaded by ferroan pyroxene. Magma mixing may be responsible for capture of olivine and formation of pyroxene mantles. The plagioclase is maskelynite-like in appearance, but the original laths were (congruently) melted and the melt partly crystallized as fine dendrites. Most of the 14% vesicles occur within plagioclase. Olivine, pyroxene, and ilmenite occur in part as fine aggregates crystallized after congruent melting with limited subsequent liquid mixing. There are two fine-grained melt components, barred plagioclase with interstitial Fe-bearing phases, and glass with olivine dendrites, derived by melting of mainly plagioclase and mainly pyroxene, respectively. Rare silica particles contain coesite and/or quartz, and silica glass. The rock has experienced >50% melting, compatible with peak pressure >~65 GPa. It is the most highly shocked shergottite so far, at shock stage S6/7. It may belong to the group of depleted shergottites ejected at ~1 Myr from Tooting Crater.  相似文献   

3.
Abstract— Sayhal Uhaymir (SaU) 094 is a 223.3 g, partially crusted, strongly to very strongly shocked melanocratic olivine-porphyric rock of the shergottite group showing a microgabbroic texture. The rock consists of pyroxene (52.0–58.2 vol%)—dominantly prismatic pigeonite (En60–68Fs20–27Wo7–9) associated with minor augite (En46–49Fs15–16Wo28–31)—brown (shock-oxidized) olivine (Fo65–69; 22.1–31%), completely isotropic interstitial plagioclase glass (maskelynite; An50–64Or0.3-0.9; 8.6–13.0%), chromite and titanian magnesian chromite (0.9-1.0%), traces of ilmenite (Ilm80–86), pyrrhotite (Fe92–100; 0.1-0.2%), merrillite (<<0.1%), and pockets (4.8-6.7%) consisting of green basaltic to basaltic andesitic shock glass that is partially devitrified into a brown to black product along boundaries with the primary minerals. The average maximum dimensions of minerals are: olivine (1.5 mm), pyroxene (0.3 mm) and maskelynite (0.3 mm). Primary melt inclusions in olivine and chromite are common and account for 0.1-0.6% of the rock. X-ray tomography revealed that the specimen contains ˜0.4 vol% of shock-melt associated vesicles, up to 3 mm in size, which show a preferred orientation. Fluidization of the maskelynite, melting and recrystallization of pyroxene, olivine and pyrrhotite indicate shock stage S6. Minor terrestrial weathering resulted in calcite-veining and minor oxidation of sulfides. The meteorite is interpreted as paired with SaU 005/008/051. The modal composition is similar to Dar al Gani 476/489/670/735/876, with the exception that neither mesostasis nor titanomagnetite nor apatite are present and that all phases show little zonation. The restricted mineral composition, predominance of chromite among the oxides, and abundance of olivine indicate affinities to the lherzolitic shergottites.  相似文献   

4.
Grove Mountains (GRV) 020090 is a “lherzolitic” shergottite found in the Grove Mountains, Antarctica. It exhibits two distinct textures: poikilitic and nonpoikilitic. In poikilitic areas, large pyroxene oikocrysts enclose subhedral olivine and chromite chadacrysts. Pyroxene oikocrysts are zoned from pigeonite cores to augite rims. In nonpoikilitic areas, olivine, pyroxene, and interstitial maskelynite occur as major phases, and minor phases include chromite and merrillite. Compared with typical “lherzolitic” shergottites, GRV 020090 contains a distinctly higher abundance of maskelynite (19 vol%). Olivine and pyroxene are more ferroan (Fa28–40, En57–72Fs24–31Wo4–14 and En46–53Fs17–21Wo26–35), and maskelynite is more alkali‐rich (Ab43–65Or2–7). The major phases, whole‐rock (estimated) and fusion crust of GRV 020090, are relatively enriched in light rare earth elements (LREE), similar to those of the geochemically enriched basaltic shergottites, but distinct from those of LREE‐depleted “lherzolitic” shergottites. Combined with a high oxygen fugacity of log fO2 = QFM ? 1.41 ± 0.04 (relative to the quartz‐fayalite‐magnetite buffer), it is clear that GRV 020090 sampled from an oxidized and enriched mantle reservoir similar to those of other enriched shergottites. The calculated REE abundances and patterns of the melts in equilibrium with the cores of major phases are parallel to but higher than that of the whole rock, suggesting that GRV 020090 originated from a single parent magma and experienced progressive fractional crystallization in a closed system. The crystallization age recorded by baddeleyite is 192 ± 10 (2σ) Ma, consistent with the young internal isochron ages of enriched shergottites. Baddeleyite dating results further demonstrated that the young ages, rather than ancient ages (>4 Ga), appear to represent the crystallization of Martian surface lava flow. GRV 020090 shares many similarities with Roberts Massif (RBT) 04261/2, the first enriched “lherzolitic” shergottite. Detailed comparisons suggest that these two rocks are petrologically and geochemically closely related, and probably launch paired.  相似文献   

5.
Northwest Africa (NWA) 6342 is an intermediate, poikilitic shergottite, found in Algeria in 2010. It is comprised of two distinct petrographic areas; poikilitic domains with rounded Mg‐rich olivine chadacrysts enclosed by large low‐Ca pyroxene oikocrysts, and a nonpoikilitic domain mainly comprised of subhedral olivine and vesicular recrystallized plagioclase. Oxygen fugacity conditions become more oxidizing during crystallization from the poikilitic to the nonpoikilitic domain (QFM?3.0 to QFM?2.2). As such, it is likely that NWA 6342 experienced a two‐stage (polybaric) crystallization history similar to that of the enriched poikilitic shergottites. NWA 6342 also experienced relatively high levels of shock metamorphism in comparison to most other poikilitic shergottites as evidenced by the fine‐grained recrystallization texture in olivine, as well as melting and subsequent crystallization of plagioclase. The recrystallization of plagioclase requires an extended period of postshock thermal metamorphism for NWA 6342 and similarly shocked intermediate poikilitic shergottites NWA 4797 and Grove Mountains 99027 most likely due to launch from Mars. The similarities in petrology, chemistry, and shock features between these three meteorites indicate that they have similar crystallization and shock histories; possibly originating from the same source area on Mars.  相似文献   

6.
Abstract— Dar al Gani 476, the 13th martian meteorite, was recovered from the Sahara in 1998. It is a basaltic shergottitic rock composed of olivine megacrysts reaching 5 mm (24 vol%) set in a finegrained groundmass of pyroxene (59 vol%) and maskelynitized plagioclase (12 vol%) with minor amounts of accessory phases (spinel, merrillite, ilmenite). Dar al Gani 476 is similar to lithology A of Elephant Moraine A79001 (EETA79001) in petrography and mineralogy, but is distinct in several aspects. Low‐Ca pyroxenes in the Dar al Gani 476 groundmass are more magnesian (En76Fs21 Wo3~En58Fs30Wo12) than those in lithology A of EETA79001 (En73Fs22Wo5~En45Fs43Wo12), rather similar to pyroxenes in lherzolitic martian meteorites (En76Fs21 Wo3~En63Fs22Wo15). Dar al Gani 476 olivine is less magnesian and shows a narrower compositional range (Fo76‐58) than EETA79001 olivine (Fo81‐53), and is also similar to olivines in lherzolitic martian meteorites (Fo74‐65). The orthopyroxene‐olivine‐chromite xenolith typical in the lithology A of EETA79001 is absent in Dar al Gani 476. It seems that Dar al Gani 476 crystallized from a slightly more primitive mafic magma than lithology A of EETA79001 and several phases (olivine, pyroxene, chromite, and ilmenite) in Dar al Gani 476 may have petrogenetic similarities to those of lherzolitic martian meteorites. Olivine megacrysts in Dar al Gani 476 are in disequilibrium with the bulk composition. The presence of fractured olivine grains in which the most Mg‐rich parts are in contact with the groundmass suggests that little diffusive modification of original olivine compositions occurred during cooling. This observation enabled us to estimate the cooling rates of Dar al Gani 476 and EETA79001 olivines, giving similar cooling rates of 0.03‐3 °C/h for Dar al Gani 476 and 0.05‐5 °C/h for EETA79001. This suggests that they were cooled near the surface (burial depth shallower than about 3 m at most), probably in lava flows during crystallization of groundmass. As is proposed for lithology A of EETA79001, it may be possible to consider that Dar al Gani 476 has an impact melt origin, a mixture of martian lherzolite and other martian rock (Queen Alexandra Range 94201, nakhlites?).  相似文献   

7.
Abstract— The lherzolitic Martian meteorite Northwest Africa (NWA) 1950 consists of two distinct zones: 1) low‐Ca pyroxene poikilically enclosing cumulate olivine (Fo70–75) and chromite, and 2) areas interstitial to the oikocrysts comprised of maskelynite, low‐ and high‐Ca pyroxene, cumulate olivine (Fo68–71) and chromite. Shock metamorphic effects, most likely associated with ejection from the Martian subsurface by large‐scale impact, include mechanical deformation of host rock olivine and pyroxene, transformation of plagioclase to maskelynite, and localized melting (pockets and veins). These shock effects indicate that NWA 1950 experienced an equilibration shock pressure of 35–45 GPa. Large (millimeter‐size) melt pockets have crystallized magnesian olivine (Fo78–87) and chromite, embedded in an Fe‐rich, Al‐poor basaltic to picro‐basaltic glass. Within the melt pockets strong thermal gradients (minimum 1 °C/μm) existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites, resulting in gradational textures of olivine and chromite. Dendritic and skeletal olivine, crystallized in the melt pocket center, has a nucleation density (1.0 × 103 crystals/mm2) that is two orders of magnitude lower than olivine euhedra near the melt margin (1.6 × 105 crystals/mm2). Based on petrography and minor element abundances, melt pocket formation occurred by in situ melting of host rock constituents by shock, as opposed to melt injected into the lherzolitic target. Despite a common origin, NWA 1950 is shocked to a lesser extent compared to Allan Hills (ALH) 77005 (45–55 GPa). Assuming ejection in a single shock event by spallation, this places NWA 1950 near to ALH 77005, but at a shallower depth within the Martian subsurface. Extensive shock melt networks, the interconnectivity between melt pockets, and the ubiquitous presence of highly vesiculated plagioclase glass in ALH 77005 suggests that this meteorite may be transitional between discreet shock melting and bulk rock melting.  相似文献   

8.
Nepheline and sodalite have been found in association with glass in a barred olivine chondrule from the Allende C3V meteorite. The major minerals of the chondrule are olivine (Fo80–88), bronzite (En85Fs12Wo3), and chromite. Olivine bars are separated by glass of nearly pure plagioclase composition (An81–99). Olivine composition is more Fe-rich than predicted by olivine-liquid equilibria (Fo96). Conditions of non-equilibrium are implied from this and the presence of plagioclase glass and small amounts of subcalcic diopside (En75Fs12Wo13) in the chondrule. The properties of this chondrule are consistent with liquid condensation, but melting of an amoeboid olivine aggregate or similar object could also have generated the chondrule-forming liquid. Nepheline and sodalite appear to have crystallized from this liquid under non-equilibrium conditions.  相似文献   

9.
We report on the discovery of a new shergottite from Tunisia, Ksar Ghilane (KG) 002. This single stone, weighing 538 g, is a coarse‐grained basaltic shergottite, mainly composed of maskelynitized plagioclase (approximately 52 vol%) and pyroxene (approximately 37 vol%). It also contains Fe‐rich olivine (approximately 4.5 vol%), large Ca‐phosphates, including both merrillites and Cl‐apatites (approximately 3.4 vol%), minor amounts of silica or SiO2‐normative K‐rich glass, pyrrhotite, Ti‐magnetite, ilmenite, and accessory baddeleyite. The largest crystals of pyroxene and plagioclase reach sizes of approximately 4 to 5 mm. Pyroxenes (Fs26–96En5–50Wo2–41). They typically range from cores of about Fs29En41Wo30 to rims of about Fs68En14Wo17. Maskelynite is Ab41–49An39–58Or1–7 in composition, but some can be as anorthitic as An93. Olivine (Fa91–96) occurs mainly within symplectitic intergrowths, in paragenesis with ilmenite, or at neighboring areas of symplectites. KG 002 is heavily shocked (S5) as indicated by mosaic extinction of pyroxenes, maskelynitized plagioclase, the occurrence of localized shock melt glass pockets, and low radiogenic He concentration. Oxygen isotopes confirm that it is a normal member of the SNC suite. KG 002 is slightly depleted in LREE and shows a positive Eu anomaly, providing evidence for complex magma genesis and mantle processes on Mars. Noble gases with a composition thought to be characteristic for Martian interior is a dominant component. Measurements of 10Be, 26Al, and 53Mn and comparison with Monte Carlo calculations of production rates indicate that KG 002 has been exposed to cosmic rays most likely as a single meteoroid body of 35–65 cm radius. KG 002 strongly resembles Los Angeles and NWA 2800 basaltic shergottites in element composition, petrography, and mineral chemistry, suggesting a possible launch‐pairing. The similar CRE ages of KG 002 and Los Angeles may suggest an ejection event at approximately 3.0 Ma.  相似文献   

10.
Northwest Africa (NWA) 7397 is a newly discovered, enriched, lherzolitic shergottite, the third described example of this group. This meteorite consists of two distinct textural lithologies (1) poikilitic—comprised of zoned pyroxene oikocrysts, with chadacrysts of chromite and olivine, and (2) nonpoikilitic—comprised of olivine, low‐Ca and high‐Ca pyroxene, maskelynite, and minor abundances of merrillite, spinel, ilmenite, and pyrrhotite. The constant Ti/Al ratios of pyroxene oikocrysts suggests initial crystallization of the poikilitic lithology at depth (equivalent to pressures of approximately 10 kbar), followed by crystallization of the nonpoikilitic lithology at shallower levels. Oxygen fugacity conditions become more oxidizing during crystallization ranging from fO2 conditions of approximately QFM‐2 to QFM‐0.7. Magma calculated to be in equilibrium with the major rock‐forming minerals is LREE‐enriched relative to depleted or intermediate shergottites and has flat overall profiles. Therefore, we suggest that the parental magma for NWA 7397 had sampled an enriched, oxidized, Martian geochemical source, similar to that of other enriched basaltic and olivine‐phyric shergottites. We present a polybaric formation model for the lherzolitic shergottite NWA 7397, to account for the petrologic constraints. Three successive stages in the development of NWA 7397 are discussed (1) formation of a REE‐enriched parental magma from a distinct Martian mantle reservoir; (2) magma ponding and development of a staging chamber concomitant with initial crystallization of the poikilitic lithology; and (3) magma ascent to the near surface, with entrainment of cumulates from the staging chamber and subsequent crystallization of the nonpoikilitic lithology en route to the surface.  相似文献   

11.
Abstract— NWA 1950 is a new lherzolitic shergottite recently recovered from Morocco and is the first sample of this group found outside Antarctica. Major constituent phases of NWA 1950 are olivine, pyroxenes, and plagioclase glass (“maskelynite”) and the rock shows a two distinct textures: poikilitic and non‐poikilitic typical of lherzolitic shergottites. In poikilitic areas, several‐millimeter‐sized pyroxene oikocrysts enclose cumulus olivine and chromite. In contrast, pyroxenes are much smaller in non‐poikilitic areas, and olivine and plagioclase glass are more abundant. Olivine in non‐poikilitic areas is more Fe‐rich (Fa29–31) and shows a narrower distribution than that in poikilitic areas (Fa23–29). Pyroxenes in non‐poikilitic areas are also more Fe‐rich than those in poikilitic areas that show continuous chemical zoning suggesting fractional crystallization under a closed system. These observations indicate that pyroxene in non‐poikilitic areas crystallized from evolved interstitial melts and olivine was re‐equilibrated with such melts. NWA 1950 shows similar mineralogy and petrology to previously known lherzolitic shergottites (ALH 77005, LEW 88516, Y‐793605 and GRV 99027) that are considered to have originated from the same igneous body on Mars. Olivine composition of NWA 1950 is intermediate between those of ALH 77005‐GRV 99027 and those of LEW 88516‐Y‐793605, but is rather similar to ALH 77005 and GRV 99027. The subtle difference of mineral chemistry (especially, olivine composition) can be explained by different degrees of re‐equilibration compared to other lherzolitic shergottites, perhaps due to different location in the same igneous body. Thus, NWA 1950 experienced a high degree of re‐equilibration, similar to ALH 77005 and GRV 99027.  相似文献   

12.
The Jiddat al Harasis (JaH) 422 ureilite was found in the Sultanate of Oman; it is classified as a ureilitic impact melt breccia. The meteorite consists of rounded polycrystalline olivine clasts (35%), pores (8%), and microcrystalline matrix (57%). Clasts and matrix have oxygen isotopic values and chemical compositions (major and trace elements) characteristic of the ureilite group. The matrix contains olivine (Fo83–90), low‐Ca pyroxene (En84–92Wo0–5), augite (En71–56Wo20–31), graphite, diamond, Fe‐metal, sulfides, chromite, and felsic glass. Pores are partly filled by secondary Fe‐oxihydroxide and desert alteration products. Pores are surrounded by strongly reduced silicates. Clasts consist of fine‐grained aggregates of polygonal olivine. These clasts have an approximately 250 μm wide reaction rim, in which olivine composition evolves progressively from the core composition (Fo79–81) to the matrix composition (Fo84–87). Veins crossing the clasts comprise pyroxene, Fe‐oxihydroxide, C‐phases, and chromite. Clasts contain Ca‐, Al‐, and Cr‐rich glass along olivine grain boundaries (<1 μm wide). We suggest that a significant portion of JaH 422, including olivine and all the pyroxenes, was molten as a result of an impact. In comparison with other impact‐melted ureilites, JaH 422 shows the highest melt portion. Based on textural and compositional considerations, clasts and matrix probably originated from the same protolith, with the clasts representing relict olivine that survived, but was recrystallized in the impact melt. During the melt stage, the high availability of FeO and elevated temperatures controlled oxygen fugacity at values high enough to stabilize olivine with Fo~83–87 and chromite. Along pores, high Mg# compositions of silicates indicate that in a late stage or after melt crystallization FeO became less available and fO2 conditions were controlled by C?CO + CO2.  相似文献   

13.
Al Huwaysah 010 is an ungrouped achondrite meteorite, recently referred to as a brachinite-like meteorite. This meteorite, showing a fine-grained assemblage of low-Ca pyroxene and opaque phases, is strongly reduced in comparison to other reduced brachinites. The occurrence of some tiny plates of graphite and oldhamite in this meteorite suggests that a partial melt residue has experienced a further reduction process. Olivine, the most abundant phase, is compositionally homogeneous (Fo83.3) as well as the clinopyroxene (En45.5Fs10.8Wo43.7) and the plagioclase (Ab69.5). Orthopyroxene (En85.4Fs13.9Wo0.7) also occurs but only in a fine intergrowth. Other accessory phases are Fe metal grains (Ni-free or Cr-bearing Fe-Ni alloy), troilite, chlorapatite, pentlandite (as inclusions in chromite). The sample shows two different closure temperatures: the highest (≈900°C) is determined via the olivine–chromite intercrystalline geothermometer and the lowest temperature (≈520°C) is determined via the pyroxene-based intracrystalline geothermometer. These temperatures may represent, respectively, the closure temperature associated with the formation and a subsequent impact event excavating the sample from the parental body. The visible to near-infrared (VNIR) reflectance spectra of Al Huwaysah 010 exhibit low reflectance, consistent with the presence of darkening components, and weak absorptions indicative of olivine and pyroxene. Comparing the spectral parameters of Al Huwaysah 010 to potential parent bodies characterized by olivine–pyroxene mineralogy, we find that it falls within the field previously attributed to the SIII type asteroids. These results lead us to classify the Al Huwaysah 010 meteorite as the most reduced brachinite, whose VNIR spectral features show strong affinities with those of SIII asteroids.  相似文献   

14.
Petrology of Martian meteorite Northwest Africa 998   总被引:1,自引:0,他引:1  
Abstract— Nakhlite Northwest Africa (NWA) 998 is an augite-rich cumulate igneous rock with mineral compositions and oxygen isotopic composition consistent with an origin on Mars. This 456-gram, partially fusion-crusted meteorite consists of (by volume) ∼75% augite (core composition Wo39En39Fs22), ∼9% olivine (Fo35), ∼7% plagioclase (Ab61An35) as anhedra among augite and olivine, ∼3.5% low-calcium pyroxenes (pigeonite and orthopyroxene) replacing or forming overgrowths on olivine and augite, ∼1% titanomagnetite, and other phases including potassium feldspar, apatite, pyrrhotite, chalcopyrite, ilmenite, and fine-grained mesostasis material. Minor secondary alteration materials include “iddingsite” associated with olivine (probably Martian), calcite crack fillings, and iron oxide/hydroxide staining (both probably terrestrial). Shock effects are limited to minor cataclasis and twinning in augite. In comparison to other nakhlites, NWA 998 contains more low-calcium pyroxenes and its plagioclase crystals are blockier. The large size of the intercumulus feldspars and the chemical homogeneity of the olivine imply relatively slow cooling and chemical equilibration in the late- and post-igneous history of this specimen, and mineral thermometers give subsolidus temperatures near 730 °C. Oxidation state was near that of the QFM buffer, from about QFM-2 in earliest crystallization to near QFM in late crystallization, and to about QFM + 1.5 in some magmatic inclusions. The replacement or overgrowth of olivine by pigeonite and orthopyroxene (with or without titanomagnetite), and the marginal replacement of augite by pigeonite, are interpreted to result from late-stage reactions with residual melts (consistent with experimental phase equilibrium relationships). Apatite is concentrated in planar zones separating apatite-free domains, which suggests that residual magma (rich in P and REE) was concentrated in planar (fracture?) zones and possibly migrated through them. Loss of late magma through these zones is consistent with the low bulk REE content of NWA 998 compared with the calculated REE content of its parent magma.  相似文献   

15.
Abstract— We report petrography, mineral chemistry, and microdistribution of rare earth elements (REE) in a new lherzolitic shergottite, Grove Mountains (GRV) 99027. The textural relationship and REE patterns of minerals suggest precipitation of cumulus olivine and chromite, followed by equilibrium crystallization of a closed system with a bulk composition of the inferred intercumulus melt. Subsolidus equilibrium temperatures of pyroxenes and olivine range from 1100 to 1210 °C, based on a two‐pyroxene thermometry and Ca partitioning between augite and olivine. Oxygen fugacity of the parent magma is 1.5–2.5 (av. 2.0 ± 0.4) log units below the quartz‐fayalite‐magnetite (QFM) buffer at 960–1360 °C, according to the olivine‐orthopyroxene‐chromite barometer. The ilmenite‐chromite barometer and thermometer show much wider ranges of oxygen fugacity (1.0–7.0 log unit below QFM) and temperature (1130–480 °C), suggesting subsolidus equilibration of the oxides at low temperatures, probably due to deep burial of GRV 99027 on Mars. The low oxygen fugacity and LREE depletion of the parent magma of GRV 99027 suggest low contamination by martian crust. Characteristics of GRV 99027 demonstrate similarity of lherzolitic shergottites, suggesting a high possibility of launch pairing or a homogeneous upper mantle of Mars if they were ejected by individual impact events. However, GRV 99027 probably experienced severe post‐shock thermal metamorphism in comparison with other lherzolitic shergottites, based on the re‐crystallization of maskelynite, the homogeneity of minerals, and the low subsolidus equilibrium temperatures between chromite and ilmenite.  相似文献   

16.
Northwest Africa (NWA) 7755 is a newly found enriched lherzolitic shergottite. Here, we report its detailed petrography and mineralogy. NWA 7755 contains both poikilitic and non‐poikilitic lithologies. Olivine has different compositional ranges in the poikilitic and non‐poikilitic lithologies, Fa30–39 and Fa37–40, respectively. Pyroxene in the non‐poikilitic lithology is systematically Fe‐richer than that in the poikilitic lithology. The chromite grains in non‐poikilitic lithology are highly Ti‐richer than those in the poikilitic lithology. The chemical variations of olivine, pyroxene, and chromite between the poikilitic and non‐poikilitic lithologies support a two‐stage formation model of lherzolitic shergottites. Besides planar fractures and strong mosaicism in olivine and pyroxene, shock‐induced melt veins and pockets are observed in NWA 7755. Olivine grains within and adjacent to melt veins and/or pockets have either transformed to ringwoodite, amorphous phase, or dissociated to bridgmanite plus magnesiowüstite. Merrillite in melt veins has completely transformed to tuite; however, apatite only has partially transformed to tuite, indicating a relatively sluggish transformation rate. The partial transformation from apatite to tuite resulted in fractional devolatilization of Cl and F in apatite. The fine‐grained mineral assemblage in melt veins consists mainly of bridgmanite, minor magnesiowüstite, Fe‐sulfide, Fe‐phosphide, and Ca‐phosphate minerals. The coexistence of bridgmanite and magnesiowüstite in these veins indicates a shock pressure of >~24 GPa and a temperature of 1800–2000 °C. Coesite and seifertite are probably present in NWA 7755. The presence of these high‐pressure minerals indicates that NWA 7755 has experienced a more intense shock metamorphism than other enriched lherzolitic shergottites.  相似文献   

17.
Tissint, a new unaltered piece of Martian volcanic materials, is the most silica‐poor and Mg‐Fe‐rich igneous rock among the “depleted” olivine‐phyric shergottites. Fe‐Mg zoning of olivine suggests equilibrium growth (<0.1 °C h?1) in the range of Fo80–56 and olivine overgrowth (Fo55–18) through a process of rapid disequilibrium (~1.0–5.0 °C h?1). The spatially extended (up to 600 μm) flat‐top Fe‐Mg profiles of olivine indicates that the early‐stage cooling rate of Tissint was slower than the other shergottites. The chemically metastable outer rim of olivine (55) consists of oscillatory phosphorus zoning at the impact‐induced melt domains and grew rapidly compared to the early to intermediate‐stage crystallization of the Tissint bulk. High‐Ca pyroxene to low‐Ca pyroxene and high‐Ca pyroxene to plagioclase ratios of Tissint are more comparable to the enriched basaltic and enriched olivine‐phyric shergottites. Dominance of augite over plagioclase induced augite to control the Ca‐buffer in the residual melt suppressing the plagioclase crystallization, which also caused a profound effect on the Al‐content in the late‐crystallized pyroxenes. Mineral chemical stability, phase‐assemblage saturation, and pressure–temperature path of evolution indicates that the parent magma entered the solidus and left the liquidus field at a depth of 40–80 km in the upper mantle. Petrogenesis of Tissint appears to be similar to LAR 06319, an enriched olivine‐phyric shergottite, during the early to intermediate stage of crystallization. A severe shock‐induced deformation resulted in remelting (10–15 vol%), recrystallization (most Fe‐rich phases), and exhumation of Tissint in a time scale of 1–8 yr. Tissint possesses some distinct characteristics, e.g., impact‐induced melting and deformation, forming phosphorus‐rich recrystallization rims of olivine, and shock‐induced melt domains without relative enrichment of LREEs compared to the bulk; and shared characteristics, e.g., modal composition and magmatic evolution with the enriched basaltic shergottites, evidently reflecting unique mantle source in comparison to the clan of the depleted members.  相似文献   

18.
Abstract— We examine the occurrences, textures, and compositional patterns of spinels in the olivine‐phyric shergottites Sayh al Uhaymir (SaU) 005, lithology A of Elephant Moraine A79001 (EET‐A), Dhofar 019, and Northwest Africa (NWA) 1110, as well as the Iherzolitic shergottite Allan Hills (ALH) A77005, in order to identify spinel‐olivine‐pyroxene assemblages for the determination of oxygen fugacity (using the oxybarometer of Wood [1991]) at several stages of crystallization. In all of these basaltic martian rocks, chromite was the earliest phase and crystallized along a trend of strict Cr‐Al variation. Spinel (chromite) crystallization was terminated by the appearance of pyroxene but resumed later with the appearance of ulvöspinel. Ulvöspinel formed overgrowths on early chromites (except those shielded as inclusions in olivine or pyroxene), retaining the evidence of the spinel stability gap in the form of a sharp core/rim boundary (except in ALH A77005, where subsolidus reequilibration diffused this boundary). Secondary effects seen in chromites include reaction with melt before ulvöspinel overgrowth, reaction with melt inclusions, reaction with olivine hosts (in ALH A77005), and exsolution of ulvöspinel or ilmenite. All chromites experienced subsolidus Fe/Mg reequilibration. Spinel‐olivine‐pyroxene assemblages representing the earliest stages of crystallization in each rock essentially consist of the highest‐Cr#, lowest‐fe# chromites not showing secondary effects plus the most magnesian olivine and equilibrium low‐Ca pyroxene. Assemblages representing the onset of ulvöspinel crystallization consist of the lowest‐Ti ulvöspinel, the most magnesian olivine in which ulvöspinel occurs as inclusions, and equilibrium low‐Ca pyroxene. The results show that, for early crystallization conditions, oxygen fugacity (fO2) increases from SaU 005 and Dhofar 019 (?QFM ‐3.8), to EET‐A (QFM ‐2.8) and ALH A77005 (QFM ‐2.6), to NWA 1110 (QFM ‐1.7). Estimates for later conditions indicate that in SaU 005 and Dhofar 019 oxidation state did not change during crystallization. In EET‐A, there was an increase in fO2 that may have been due to mixing of reduced material with a more oxidized magma. In NWA 1110, there was a dramatic increase, indicating a non‐buffered system, possibly related to its high oxidation state. Differences in fO2 among shergottites are not primarily due to igneous fractionation but, rather, to derivation from (and possibly mixing of) different reservoirs.  相似文献   

19.
Abstract— Antarctic meteorite QUE 94201 is a new basaltic shergottite that is mainly composed of subequal amounts of maskelynite and pyroxenes (pigeonite and augite) plus abundant merrillite and accessory phases. It also contains impact melt. Complex zoning patterns in QUE 94201 pyroxenes revealed by elemental map analyses using an electron microprobe suggest a crystallization sequence from Mg-rich pigeonite (En62Fss30Wog) to extremely Fe-rich pigeonite (En5Fs81Wo14) via {110} Mg-rich augite bands (En44Fs20Wo36) in a single crystal. These textures, along with the abundant plagioclase (maskelynite), indicates single-stage rapid cooling (>5 °C/year) of this rock from a supercooled magma. Transition from Mg-rich augite to Fe-rich pigeonite reflects the onset of plagioclase crystallization. Enrichment of late-stage phases in QUE 94201 implies crystallization from an evolved magma and suggests a different parent magma composition from the other basaltic shergottites. Lithology B of EETA79001 basaltic shergottite contains pyroxenes that show complex zoning with augite bands similar to those in QUE 94201 pyroxene, which suggests similar one-stage rapid cooling. Lithology B of EETA79001 also resembles QUE 94201 in its coarse-grained texture of silicates and its high abundance of maskelynite, although QUE 94201 probably crystallized from a more fractionated magma. We also note that some Apollo lunar mare basalts (e.g., 12020 and 12021) have similar mineralogy and petrology to QUE 94201, especially in pyroxene zoning. All these basaltic rocks with complex pyroxene zoning suggest rapid metastable crystallization from supercooled magmas.  相似文献   

20.
Abstract— We report on the discovery of a new shergottite from South Morocco. This single stone weighing 320 g is referenced as Northwest Africa (NWA) 856 with Djel Ibone as a synonymous name. It is a fresh, fine‐grained basaltic rock consisting mainly of two pyroxenes (total ?68 vol%: 45% pigeonite, En61‐16Wo9–22Fs26–68; 23% augite, En46‐26Wo34‐29Fs21–43) and plagioclase converted to maskelynite (?23 vol%, Ab43–57Or1–5An54‐36). Accessory minerals include merrillite, Cl‐apatite, pyrrhotite, ilmenite, ulvöspinel, silica (stishovite and glass), amorphous K‐feldspar and baddeleyite. Amorphous mixtures of maskelynite and silica occur most commonly as median layers inside maskelynite laths. In addition, melt pockets (?2 vol%) were recognized with relics of maskelynite, pyroxene and both dense silica glass and stishovite occurring as both grains and submicrometer needles. The compositions of the melt pockets are consistent with mixtures of maskelynite and pyroxenes with an average of ?50 vol% maskelynite. The meteorite is highly fractured at all scales. The bulk composition of NWA 856 has been measured for 44 elements. It is an Al‐poor ferroan basaltic rock which strongly resembles Shergotty and Zagami in its major and trace element composition. The nearly flat rare earth element (REE) pattern (La/Lu)n = 0.9, is similar to that of Shergotty or Zagami and differs significantly from NWA 480, another Moroccan shergottite recently described. According to the U, Ba and Sr abundances, NWA 856 is not significantly weathered. The oxygen isotopes (δ18O = +5.03%, δ17O = +3.09%, and Δ17O = +0.47%) are in agreement with the martian origin of this meteorite. On the basis of grain size, pyroxene zoning and composition, abundance of silica inclusions associated with maskelynite, trace element abundances, REE pattern and oxygen isotopes, pairing with NWA 480 is excluded. The similarity with Shergotty and Zagami is striking. The only significant differences are a larger grain size, a greater abundance of silica and melt pockets, a slightly more restricted range of pyroxene compositions and the absence of significant mesostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号