首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper presents a semi-empirical model for variations of interstellar polarization curves based upon the Serkowski-Wilking law for optical and near-infrared wavebands. The model assumes that nonspherical dust grains producing interstellar polarization are core-mantle particles shaped like oblate spheroids. The physical picture is one in which large (a 0 0.1µm) particles in the dense cloud phase are deposited into the diffuse cloud medium and thereafter undergo mantle processing by galactic shocks and UV starlight. It is shown that polarization curves vary their widths mainly as a consequence of the nonthermal sputtering of mantles by low-velocity shocks. Mantle sputtering by shocks in low density clouds tends to broaden the curves, whereas mantle sputtering by shocks in denser clouds produce narrow curves. Hence, shock processing of grain mantles can explain the observed correlation between the width of polarization curves and the dust grain environment.  相似文献   

2.
Some polarization spectra and light curves are being generated to explore the properties of AM-Her(culis) shocks for which the cyclotron emission is self-consistently calculated. Here, we quantify several of the relationships between the polarization and the properties of the magnetic field for magnetic white dwarf oscillating radiative accretion shocks. We discuss the properties of the polarization for time scales ≫ tosc, the oscillation period of the radiative shocks. The time-averaged polarization curves are calculated for a polar cap composed of independently oscillating flux tubes. We choose our funnels to cover the polar cap subtending an angle of 18° from the polar axis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Modelling the polarized cyclotron emission from magnetic cataclysmic variables has been a pivotal technique for determining the structure of the accretion zones on the white dwarf. To date, model solutions have been obtained from trial fits to the intensity and polarization data, which have been constructed from emission regions (for example arcs and spots) put in by hand. These models were all inferred indirectly from arguments based on the polarization and X-ray light curves.   We present a more analytical and objective technique using optimization by a genetic algorithm, Tikhonov regularization and Powell's method that robustly models the details of polarized emission.   To demonstrate the success of this technique, we show the results of several simulations in which we calculated the intensity and polarization curves from arbitrarily shaped emission regions on the surface of a sphere and then applied our code to these curves to recover the original test data. We also show how adding artificial noise affects the outcome of the optimization technique.  相似文献   

4.
Assuming that the Rayleigh-scattering atmosphere of a planet is homogeneous and plane-parallel we estimate the influence of non-conservativeness of the atmosphere and the state of polarization of the incident radiation upon the phase curves both for flux and polarization.  相似文献   

5.
Using the recently available exact computations of the scattering efficiencies of spheroidal particles numerical calculations of the extinction and polarization curves have been made for a distribution of particle sizes, shapes and orientations. The results are presented and compared with the observed interstellar extinction and polarization. Possible models for interstellar dust with nonspherical grains have been discussed.  相似文献   

6.
Abstract— We present Markov‐Chain Monte‐Carlo methods (MCMC) for the derivation of empirical model parameters for photometric and polarimetric phase curves of asteroids. Here we model the two phase curves jointly at phase angles ≤25° using a linear‐exponential model, accounting for the opposition effect in disk‐integrated brightness and the negative branch in the degree of linear polarization. We apply the MCMC methods to V‐band phase curves of asteroids 419 Aurelia (taxonomic class F), 24 Themis (C), 1 Ceres (G), 20 Massalia (S), 55 Pandora (M), and 64 Angelina (E). We show that the photometric and polarimetric phase curves can be described using a common nonlinear parameter for the angular widths of the opposition effect and negative‐polarization branch, thus supporting the hypothesis of common physical mechanisms being responsible for the phenomena. Furthermore, incorporating polarimetric observations removes the indeterminacy of the opposition effect for 1 Ceres. We unveil a trend in the interrelation between the enhancement factor of the opposition effect and the angular width: the enhancement factor decreases with decreasing angular width. The minimum polarization and the polarimetric slope at the inversion angle show systematic trends when plotted against the angular width and the normalized photometric slope parameter. Our new approach allows improved analyses of possible similarities and differences among asteroidal surfaces.  相似文献   

7.
Cometary particles mainly consist of silicates and carbon compounds; they seem to be fluffy aggregates of tiny grains, as found in some IDPs. The linear polarization of the scattered light is an efficient method to characterize their physical properties. Laboratory simulations of light scattering by cometary analog particles help to disentangle different physical parameters by comparison with observational data. We present here polarization laboratory results with nine samples levitating particles: five samples of vapor-condensed magnesiosilica, one ferrosilica smoke, a mixture of magnesio-ferrosilica smokes, one mixture of ferrosilica with carbon and one mixture of magnesio-ferrosilica with carbon. The phase curves are bell-shaped with a maximum polarization at a phase range of (80°-100°). A shallow negative branch can be present at phase angles smaller than 20°. The different characteristics of the phase curves are discussed considering the size and the structure of the constituent grains and the size of the particles. For the five magnesiosilica samples, the maximum in polarization is in the 40% range (close to cometary values), and no wavelength dependence is detected; the negative branch, whose presence seems to be linked to the presence of large aggregates of fine silica (SiO2) grains, does not always exist. For the ferrosilica smoke, the maximum in polarization is about 30% in red light (632.8 nm) and 40% in green light (543.5 nm); the negative branch occurs for phase angles smaller than 20°. For the two mixtures with carbon black, the polarization spectral gradient is positive, as expected for cometary analog particles. Finally, the phase curves obtained for agglomerates of magnesio-ferrosilica and carbon (expected to be the main components of cometary particles) are comparable to those obtained by remote observations of dust in cometary comae.  相似文献   

8.
Absorption and polarization line profiles as well as the curves of growth in the integrated light of a planet over the whole range of phase angles have been computed assuming a semi-infinite atmosphere scattering according to Rayleigh’s phase-matrix which takes polarization into account. The relative change in line depth and equivalent widths qualitatively agree with the observations of the CO2 bands in Venus reported by Young, Schorn and Young (1980). It is pointed out that the bands might be formed in a part of the atmosphere which is different from that where continuum polarization originates.  相似文献   

9.
Phase dependences of circular polarization were obtained with a precision Stokes polarimeter designed and constructed at the Main Astronomical Observatory of AS Ukraine. A study was made of dielectric and metallic powders with grains of diameter 10–100 m. Metallic powders were found to produce an essential circular polarization - up to 3%, just as dielectric powders did not show circular polarization values more than 0.05% Change of circular polarization with phase angle V is greatly depended on surface structure. Loose powders give phase curves with the same sign of circular polarization everywhere and with maximum at large phase angles V > 120 . Measurements of compacted powders show curves which change the sign repeatedly and have additional maxima, including a maximum at small phase angles V < 40 . A theory was created which considers a circular polarization as a result of multiple reflections of light from particulate surface. The theory provides reasonable good fit to the experimental data. It was concluded that measurements of circular polarization can be used to find metals in surface material of cosmic bodies (especially asteroids) and to determine characteristics of surface structure, in particular, to establish presence of regolith on metal-rich bodies.  相似文献   

10.
We have performed radio polarization observation experiments of the stars V772 Her and β Per with the Urumqi 25 m radio telescope at the 6 cm waveband, and obtained light curves of the stars after data processing and calibration. A radio ?are from the star V772 Her was detected on 2011 April 13. The degree of linear polarization of this ?are is about 30%, and the polarization angle is about 4°. We have detected also the slowly-varying component of the radio radiation from β Per, as well as a short ?are superposed on it, which has a very weak linear polarization.  相似文献   

11.
Most of our knowledge on heterogeneous media in the Universe comes from the light they scatter. This light is mainly linearly polarized, and the polarization phase curves contain information about the properties of the scattering dust. In the solar system, the dust seems to be made of irregular aggregates with a size greater than a few microns and a fractal structure. Many constraints appear in the scattering computations, due to the trickiness of the mathematical calculations, and to our ignorance of the precise structure of the dust. This leads to the necessity to perform light scattering measurements on characteristic aggregates, built under low velocity ballistic collisions. Microgravity is a sensible way to achieve such measurements on a cloud of levitating and aggregating dust particles. A first step has been the PROGRA2 experiment, which operates during parabolic flights on an aircraft. The instrument is a polar nephelometer measuring successively the light scattered by a dust sample at various angles; it is fully operational, and will provide a data base of polarization phase curves. A second step is the CODAG-SR experiment, which uses the duration of a rocket flight to build up dust aggregates. The instrument measures simultaneously the light scattered at numerous phase angles; it is now space qualified, and should provide in a near future a monitoring of the intensity and polarization phase curves while the aggregation processes are taking place. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
13.
《Icarus》1985,63(2):206-216
Comets Kopff (1982k) and Tempel 2 (1982d) were observed with a photopolarimeter. The observations spanned phase angles of 10-30° for Comet Kopff and of 45° for Comet Tempel 2. The Comet Kopff observations were near the phase angle where the position angle of the polarization switches from parallel to perpendicular to the scattering plane. The polarization showed no color dependence in the V, R, and I filters. The polarization of Comet Kopff as sa function of phase angle resembles polarization curves of asteroids. The minimum polarization was -1.5±0.1%. The data from Comet Kopff and four other comets were combined in a polarization versus phase-angle diagram. The coincidence of the data was remarkable. The collection of comet data determined a crossover phase angle of 22 ± 0° and a polarimetric slope of 0.34 ± 0.01% per degree. Mie models were unable to represent the group polarization curve, even though five parameters were varied over wide ranges. Assuming that multiple scattering provides the basis for the correlations between asteroid polarization and albedo, and that the multiple scattering process dominates the scattering from comet dust, the comet polarization implies an albedo. The two parameters of the comet polarization curve imply the same low albedo.  相似文献   

14.
利用新疆天文台南山基地25m射电望远镜在6cm波段对恒星V772 Her和βPer进行了偏振观测试验.通过数据处理和校准得到恒星的射电光变曲线.探测到V772 Her的射电耀发现象,耀发时的线偏振度约达30%,偏振位置角约4°;探测到βPer的缓变成份及叠加其上的快速耀发,βPer耀发时线偏振很弱.  相似文献   

15.
Based on an analysis of light curves of 223 long-period variables of the Mira Ceti type, recorded using the HIPPARCOS space telescope, it is shown that all the light curves of these stars can be divided by outward form into two groups: stars exhibiting simple light curves of sinusoidal shape and stars with complicated light curves, with hump-shaped formations on the ascending branch of the curve. Some observational parameters of the investigated stars display a tendency to separation into groups of stars with complicated and simple light curves. Stars with complicated light curves have longer periods, they are brighter in absolute bolometric magnitude, and there is a greater probability of detecting polarization in their light. Translated from Astrofizika, Vol. 42, No. 4, pp. 541–554, October–December, 1999.  相似文献   

16.
Submilliarcsecond astrometry and imaging of the black hole Sgr A* at the Galactic Centre may become possible in the near future at infrared and submillimetre wavelengths. Motivated by the observations of short-term infrared and X-ray variability of Sgr A*, in a previous paper, we computed the expected images and light curves, including polarization, associated with a compact emission region orbiting the central black hole. We extend this work, using a more realistic hotspot model and including the effects of opacity in the underlying accretion flow. We find that at infrared wavelengths, the qualitative features identified by our earlier work are present, namely it is possible to extract the black hole mass and spin from spot images and light curves of the observed flux and polarization. At radio wavelengths, disc opacity produces significant departures from the infrared behaviour, but there are still generic signatures of the black hole properties. Detailed comparison of these results with future data can be used to test general relativity and to improve existing models for the accretion flow in the immediate vicinity of the black hole.  相似文献   

17.
Polarimetric observations of the light scattered by dust have been carried out at Pic-du-Midi Observatory with the 2 m telescope in June and September–October 1996, and at Haute-Provence Observatory with the 0.80 m telescope in April 1997. They cover a total number of 11 nights and a large (6.9°–47.7°) phase angle range. The spatial resolution allows to underline structures in the coma, as well in the brightness images as in the polarization maps, with a correlation between the regions of bright structures and the regions of higher polarization. A clear difference appears between the sunward and antisunward side, with higher polarization on the antisunward side. The phase angle coverage allows us to obtain a polarimetric phase curve for the whole coma and to compare it with other cometary phase curves. The degree of polarization is higher for Hale-Bopp than for the comets previously observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In the synchrotron radiation model, the polarization property depends on both the configuration of the magnetic field and the geometry of the visible emitting region. Some peculiar behaviours in the X-ray afterglows of gamma-ray bursts (GRBs) observed with Swift , such as energetic flares and a plateau followed by a sharp drop, might be highly linearly polarized because the outflows powering these behaviours may be dominated by Poynting flux. The breakdown of the symmetry of the visible emitting region may also be well hidden in the peculiar X-ray data and may give rise to interesting polarization signatures. In this paper, we focus on the polarization accompanying the very early sharp decline of GRB X-ray afterglows. We show that strong polarization evolution is possible in both the high latitude emission model and the dying central engine model, which are used to interpret this sharp X-ray decline. It is thus not easy to efficiently probe the physical origin of the very early X-ray sharp decline with future polarimetry. Strong polarization evolution is also possible in the decline phase of X-ray flares and in the shallow decline phase of X-ray light curves characterized by chromatic X-ray versus optical breaks. A detector such as the X-ray Telescope (XRT), but with polarization capability, on board a satellite like Swift would be suitable for testing our predictions.  相似文献   

19.
A Monte Carlo model designed to compute both the input and output radiation fields from spherical-shell cometary atmospheres has been developed. The code is an improved version of that by H. Salo (1988, Icarus76, 253-269); it includes the computation of the full Stokes vector and can compute both the input fluxes impinging on the nucleus surface and the output radiation. This will have specific applications for the near-nucleus photometry, polarimetry, and imaging data collection planned in the near future from space probes. After carrying out some validation tests of the code, we consider here the effects of including the full 4×4 scattering matrix in the calculations of the radiative flux impinging on cometary nuclei. As input to the code we used realistic phase matrices derived by fitting the observed behavior of the linear polarization as a function of phase angle. The observed single scattering linear polarization phase curves of comets are fairly well represented by a mixture of magnesium-rich olivine particles and small carbonaceous particles. The input matrix of the code is thus given by the phase matrix for olivine as obtained in the laboratory plus a variable scattering fraction phase matrix for absorbing carbonaceous particles. These fractions are 3.5% for Comet Halley and 6% for Comet Hale-Bopp, the comet with the highest percentage of all those observed.The errors in the total input flux impinging on the nucleus surface caused by neglecting polarization are found to be within 10% for the full range of solar zenith angles. Additional tests on the resulting linear polarization of the light emerging from cometary nuclei in near-nucleus observation conditions at a variety of coma optical thicknesses show that the polarization phase curves do not experience any significant changes for optical thicknesses τ?0.25 and Halley-like surface albedo, except near 90° phase angle.  相似文献   

20.
N.N. Kiselev  G.P. Chernova 《Icarus》1981,48(3):473-481
The dependence of brightness and polarization of cometary on the phase angle is studied. The similarity between the phase curves of comets, minor planets, and the zodiacal cloud is pointed out. The dependence found correspond to dielectric particles with dimensions greater than 1 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号