首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The radio emission from Jupiter at 10, 21 cm wavelength has been measured with a spatial resolution of the order of 1 Jupiter radius. This may be analytically reduced to the emission per cubic centimeter of source at each measured frequency. The theoretically predicted synchrotron emission of electrons as a function of frequency, magnetic field and electron energy can then be compared to the observed source emissivity to obtain the number density and ‘temperature’ of the electrons. Present observations taken at different epochs are not sufficiently reliable to infer peak energies within an order of magnitude. Nevertheless the present results indicate that electrons diffuse in rapidly (in a time of the order of months) conserving the first adiabatic invariant and reach a peak energy at about 2 Jupiter radii. The electron energy decreases rapidly nearer the planet because of energy lost to radiation in the large magnetic field close to the planet.  相似文献   

2.
A number of charged-particle radiation belt models for Uranus and Neptune are postulated, and the synchrotron emission spectrum for each is calculated over the frequency range 18.75 to 2400 MHz. Although no radio observations of these planets exist at frequencies below 1400MHz, available observations are used in conjunction with the synchrotron calculations to establish a rough upper limit to the size and strength of the planets' magnetic field strength and radiation belt intensity. The magnitude of synchrotron radio emission expected in many of the models is within the detection range of several existing ground-based telescopes, at decimetric and metric wavelengths.  相似文献   

3.
4.
Deep 1–49 cm surveys of the circumzenithal sky area performed using the RATAN-600 radio telescope allowed the spectral index of Galactic synchrotron emission in the 7.6–49 cm wavelength interval to be refined. The data obtained are inconsistent with the model of synchrotron emission adopted to interpret the results of the first year of the WMAP mission, which led to the hypothesis of the early secondary ionization of the Universe at redshifts Z > 10–30. New observations made with the RATAN-600 demonstrated the possibility of deep studies of the intensity and polarization of the microwave background (the E component) in ground-based experiments at short centimeter wavelengths. Galactic synchrotron emission may as well limit the possibilities of space- and ground-based studies of the polarization of cosmic microwave background radiation arising as a result of scattering induced by relic gravitational waves (the B component). The sky area studied with the RATAN-600 is intended to be used to interpret the PLANCK mission data in order to ensure a more detailed account of the role of the Galactic synchrotron emission.  相似文献   

5.
David E Dunn  Imke de Pater 《Icarus》2003,165(1):121-136
We present a summary of Jupiter data taken over an eighteen year span (1981-1998) by the Very Large Array at ∼21.0 cm. At this wavelength the emission is dominated by synchrotron radiation, which is roughly proportional to the product of the electron number density and magnetic field strength (NeB). At each epoch 8-12 hours of data were taken, which allowed us to examine Jupiter during an entire rotation period. We mapped the longitudinal structure of the synchrotron radiation by using a 3D reconstruction technique developed by Sault et al. [Astron. Astrophys. 324 (1997) 1190] which enabled us to produce plots of the latitude, radial distance, and peak intensity vs. jovian longitude (System III). The results show the shape of the synchrotron radiation has remained stable (except, of course, during the period of comet Shoemaker-Levy 9 impacts). Specifically, the latitudinal structure has remained nearly constant. Furthermore, the general dependence of the radial intensity profile has remained the same throughout the years, though radial distance has slightly, though significantly, changed. This constancy implies that the spatial structure of both the particle distribution and magnetic field have varied little over the eighteen year span. The primary changes in the synchrotron radiation have been seen in the intensity of emission as a function of time. There are certain epochs (e.g., 1987) which show more emissivity than others (e.g., 1981, 1995) at all longitudes. When each epoch is longitudinally averaged, there may be an anti-correlation between the radial distance and corresponding peak intensities of the synchrotron radiation, as one might expect if radial diffusion is important. We examine these trends by comparing the data to plots of the total intensity at 13 cm (by Klein et al., in: Rucker, H.O., et al., Planetary Radio Emissions V. Austrian Acad. Sci. Press, Vienna, p. 221). Overall, variations in our 21-cm data are similar to those measured at 13 cm, but there appears to be a change in spectral index and perhaps in the spatial brightness distribution in 1992. We attribute this to a change in both the spatial and energy distribution of the relativistic electrons.  相似文献   

6.
Origin of magnetic fields, its structure and effects on dynamical processes in stars to galaxies are not well understood. Lack of a direct probe has remained a problem for its study. The first phase of Square Kilometre Array (SKA-I), will have almost an order of magnitude higher sensitivity than the best existing radio telescope at GHz frequencies. In this contribution, we discuss specific science cases that are of interest to the Indian community concerned with astrophysical turbulence and magnetic fields. The SKA-I will allow observations of a large number of background sources with detectable polarization and measure their Faraday depths (FDs) through the Milky Way, other galaxies and their circum-galactic mediums. This will probe line-of-sight magnetic fields in these objects well and provide field configurations. Detailed comparison of observational data (e.g., pitch angles in spirals) with models which consider various processes giving rise to field amplification and maintenance (e.g., various types of dynamo models) will then be possible. Such observations will also provide the coherence scale of the fields and its random component through RM structure function. Measuring the random component is important to characterize turbulence in the medium. Observations of FDs with redshift will provide important information on magnetic field evolution as a function of redshift. The background sources could also be used to probe magnetic fields and its coherent scale in galaxy clusters and in bridges formed between interacting galaxies. Other than FDs, sensitive observations of synchrotron emission from galaxies will provide complimentary information on their magnetic field strengths in the sky plane. The core shift measurements of AGNs can provide more precise measurements of magnetic field in the sub parsec region near the black hole and its evolution. The low band of SKA-I will also be useful to study circularly polarized emission from Sun and comparing various models of field configurations with observations.  相似文献   

7.
《New Astronomy Reviews》2002,46(2-7):387-391
We have applied an effective numerical scheme for cosmic-ray transport to 3D MHD simulations of jet flow in radio galaxies (see the companion paper by Jones et al. herein). The marriage of relativistic particle and 3D magnetic field information allows us to construct a rich set of ‘synthetic observations’ of our simulated objects. The information is sufficient to calculate the ‘true’ synchrotron emissivity at a given frequency using explicit information about the relativistic electrons. This enables us to produce synchrotron surface-brightness maps, including polarization. Inverse-Compton X-ray surface-brightness maps may also be produced. First results intended to explore the connection between jet dynamics and electron transport in radio lobes are discussed. We infer lobe magnetic field values by comparison of synthetically observed X-ray and synchrotron fluxes, and find these ‘inverse-Compton’ fields to be quite consistent with the actual RMS field averaged over the lobe. The simplest minimum energy calculation from the synthetic observations also seems to agree with the actual simulated source properties.  相似文献   

8.
The observations of a microwave burst with multiple impulses on 1993 Oct 2, 073940–074100 UT are analysed. This event consists of multiple impulses superimposed on a slowly varying burst background. Our formula for coronal magnetic field diagnostics was used here for the first time to derive the field strength and information on the energetic electrons. The results are: 1) The mean spectral index of the impulsive component in the optically thin part is less than that of the slow background by 1 (a harder spectrum). The mean brightness temperature at 19.6 GHz of the former is 6 times that of the latter. 2) The mean magnetic strengths of the impulse and slow burst regions are 158 G and 531 G, respectively. The time variation in the slow burst region is saddle-shaped, being 50% lower in the middle than at the beginning and end. 3) The column density NL and number density N of energetic electrons in the impulsive component are 4% and 8% of those of the slow component, but the energy flux and emission coefficient are 100% and 800% greater. The two components appear to be produced by two different electron groups with different energy distributions in two different regions.  相似文献   

9.
We present multi-frequency observations and model computations of the microwave emission of a solar active region. The radio observations were obtained with the RATAN-600 at several wavelengths between 0.8 and 31.6 cm and with the VLA at 6 and 20 cm. The active region was also observed in the EUV O Iv lines by the HRTS instrument aboard the Space Shuttle Spacelab-2 mission. These lines are formed in the chromosphere-corona transition region and their intensity ratio is sensitive to pressure. Photospheric magnetograms provided both the longitudinal and the transverse component of the magnetic field. The microwave observations were checked against model computations taking into account both the free-free and the gyro-resonance emission mechanisms and using the pressure data from the O IV lines. The magnetic field was computed through constant- force-free extrapolations of the longitudinal photospheric field. We computed both the flux from 2 to 20 cm and the spatial structure of the microwave emission at 6 and 20 cm. The comparison of the computed and observed flux spectra allowed us to estimate the magnetic field strength at the base of the transition region and in the low corona, as well as the values of the conductive flux and the height of the base of the transition region. The model maps at 6 cm and 20 cm showed that was not constant above the active region; the same conclusion was reached on the basis of the photospheric observations. The use of pressure measurements allowed us to identify microwave structures which were determined by pressure enhancements. At 6 cm the computations confirmed the fact that the magnetic field is the principal factor that determines the structure of sunspot-associated sources and showed that the effect of pressure variations was small. Pressure variations were more important at 20 cm, where the peak of the emission was associated with the sunspot and a diffuse component was associated with the plage which had an average pressure higher by a factor of 1.54 than the sunspot.  相似文献   

10.
The continuum spectrum of OJ 287, like most other BL Lac objects, is featureless- no emission or absorption lines are observed. However, OJ 287 shows variations at different timescales in flux and polarization at various wavelength bands. Using the available variability data one can estimate the sizes of the emission regions in the source from light travel time arguments. We assume the emission mechanism to be synchrotron radiation by high energy electrons with single power law energy distribution. Theoretical synchrotron spectrum in the frequency range 1011–1017 H z is compared with the observed spectral shape, obtained from new multifrequency quasi-simultaneous observations, to estimate the lower and upper cut off frequencies. These frequencies are used to obtain theoretical values of the variability timescales and magnetic field in the emission region. We obtain a value of 0.93 G for the magnetic field and 5.184×104 sec for the cooling time from the quiescent continuum spectrum. The shock-in-jet model explains the spectrum where shocks accelerate the particles and amplify the magnetic field in the jet. This timescale is compared with the one obtained from observed short timescale variability (20 minutes) with proper beaming correction. The short timescale variations (200 minutes in the source frame), possibly caused by an additional, flaring, component of the source, are also used to calculate compressed magnetic field. The observed and theoretically estimated variability timescales and the shape of the spectrum suggest that there are more than one emission components in OJ 287.  相似文献   

11.
We discuss spatial variations in electron density at the base of the corona and in the temperature gradient in the chromospheric-coronal transition layer as determined from analysis of maps constructed from Mgx and OVI spectroheliograms. Both the mapping techniques and results of analyzing EUV spectra from OSO 6 observations are presented. Comparisons of these maps with photospheric magnetograms and spectroheliograms made in chromospheric EUV lines and continua indicate that the electron density and temperature gradient in the transition layer tend to be enhanced in areas where the photospheric magnetic field and chromospheric EUV emission are enhanced. Relationships among the coronal electron density, transition-layer temperature gradient, chromospheric emission, and photospheric magnetic field strength are derived.  相似文献   

12.
13.
This paper presents a modeling of the variable synchrotron emission in the BL Lacertae sources (BLLs). Flux variability is assumed to be a result of the interaction between a relativistic shock wave with a magnetized jet material. Long-term flares (of months to years durations) are modeled via the propagation of a plane relativistic shock wave though the emission zone of a cylindrical form with the radius R and length H. As for short-term bursts (lasting from days to weeks), they may result from shock passage through the jet inhomogeneities such as a shell of enhanced density downstream to a Mach disc, originated due to pressure imbalance between the jet and its ambient medium. Emitting particles (electrons) gain the energies, sufficient to produce synchrotron photons at optical—X-ray frequencies, via the first-order Fermi mechanism. Observation’s frequency is the main parameter determining a rate of the increase/ decay of the emission via the characteristic decay time of emitting electrons. The magnetic field, assumed to be turbulent with an average field constant throughout the entire emission zone, is another key parameter determining the slope of a lightcurve corresponding to the flare—the higher strength the magnetic field has, the steeper the lightcurve is. The rest input parameters (shock speed, jet viewing angle, maximum/minimum energies of the electrons, particles’ density etc.), as well the strength of average magnetic field, influence the energy output from a flare.  相似文献   

14.
On the basis of issues raised by observations of BL Lac objects and the qualitative jet model proposed by Bakeret al. in 1988, we have been led to consider the quantitative role of coherent, stimulated emission in jets and construct a new jet model of blazars in which a relativistic electron beam with an axial symmetric, power-law distribution is injected from the central engine into the jet plasma. We study quantitatively the synchrotron emission of the relativistic electron beams. Using the weak turbulent theory of plasma, we discuss the interaction between relativistic electron beams and jet plasma, and the roles of stimulated emission. The main results are:
  1. The synchrotron emission increases sensitively with the increase of the angle between the direction of the beam and the magnetic field. When the direction of the beam is vertical to the magnetic field, the synchrotron emission reaches its maximum, i.e. the emitted waves are beamed in the direction of the jet axis. We suggest that radio selected BL Lac objects belong to this extreme classification.
  2. The synchrotron emission of the relativistic beam increases rapidly with the increase of the Lorentz factor of the relativistic electron,γ, whenγ ≤ 22.5, then decreases rapidly with increase ofγ.
  3. The stimulated emission also increases with increasing Lorentz factorγ of the relativistic electrons whenγ ≤ 35 and then decreases with the increasingγ. The maximum stimulated emission and the maximum synchrotron emission occur at different frequencies. Stimulated emission is probably very important and reasonable flare mechanism in blazars.
  4. The rapid polarization position angle (PA) swings may arise from the interaction between the relativistic electron beam and the turbulent plasma.
  相似文献   

15.
Decametric radio observations of Jupiter were made before, during, and after the impacts of the fragments of the comet S-L 9 with the planet, from the University of Florida Radio Observatory, the Maipu Radio Astronomy Observatory of the University of Chile, and the Owens Valley Radio Observatory of the California Institute of Technology. The decametric radiation was monitored at frequencies from 16.7 to 32 MHz. The minimum detectable flux densities were on the order of 30 kJy, except for that of the large 26.3 MHz array in Florida, which was about 1 kJy. There was no significant enhancement or suppression of the decametric L-burst or S-burst emission with respect to normal activity patterns that might be attributed to the fragment entries. However, a burst of left-hand elliptically polarized radiation having a considerably longer duration than an L-burst was observed almost simultaneously with the impact of the large fragment Q2, and another with right-hand elliptical polarization was observed simultaneously with Q1. We consider the possibility that these two bursts were emitted just above the local electron cyclotron frequencies from the southern and northern ends, respectively, of magnetic flux tubes that had been excited in some way by the proximity of fragments Q2 and Q1.In addition to the monitoring of the decametric radiation, a search was conducted for possible comet-enhanced Jovian synchrotron radiation at 45 MHz using a large dipole antenna array at the observatory in Chile. This frequency is above the cutoff of the decametric radiation, but is considerably below the lowest frequency at which the synchrotron emission has previously been detected. The minimum detectable flux density with the 45 MHz antenna was about 5 Jy. No synchrotron emission at all was found before, during, or after the entry of the comet fragments.  相似文献   

16.
I re-examine the brightness temperature problem in PKS 0405-385, which is an extreme intra-day variable radio quasar with an inferred brightness temperature of  ∼5 × 1014 K  at 5 GHz, well above the Compton catastrophe limit of  ∼1011 K  that is reached when the synchrotron photon energy density exceeds the energy density of the magnetic field. If one takes into account the uncertainty in the distance to the ionized clouds responsible for interstellar scintillation causing rapid intra-day variability in PKS 0405-385, it is possible that the brightness temperature could be as low as  ∼1013 K  at 5 GHz, or even lower. The radio spectrum can be fitted by optically thin emission from mono-energetic electrons, or an electron spectrum with a low-energy cut-off such that the critical frequency of the lowest energy electrons is above the radio frequencies of interest. If one observes optically thin emission along a long narrow emission region, the average energy density in the emission region can be many orders of magnitude lower than calculated from the observed intensity if one assumed a spherical emission region. I discuss the physical conditions in the emission region and find that the Compton catastrophe can then be avoided using a reasonable Doppler factor. I also show that MeV to 100-GeV gamma-ray emission at observable flux levels should be expected from extreme intra-day variable sources such as PKS 0405-385.  相似文献   

17.
We present simultaneous dual-frequency radio observations of Cygnus X-3 during a phase of low-level activity. We constrain the minimum variability time-scale to be 20 min at 43 GHz and 30 min at 15 GHz, implying source sizes of 2–4 au. We detect polarized emission at a level of a few per cent at 43 GHz which varies with the total intensity. The delay of ∼10 min between the peaks of the flares at the two frequencies is seen to decrease with time, and we find that synchrotron self-absorption and free–free absorption by entrained thermal material play a larger role in determining the opacity than absorption in the stellar wind of the companion. A shock-in-jet model gives a good fit to the light curves at all frequencies, demonstrating that this mechanism, which has previously been used to explain the brighter, longer lived giant outbursts in this source, is also applicable to these low-level flaring events. Assembling the data from outbursts spanning over two orders of magnitude in flux density shows evidence for a strong correlation between the peak brightness of an event, and the time-scale and frequency at which this is attained. Brighter flares evolve on longer time-scales and peak at lower frequencies. Analysis of the fitted model parameters suggests that brighter outbursts are due to shocks forming further downstream in the jet, with an increased electron normalization and magnetic field strength both playing a role in setting the strength of the outburst.  相似文献   

18.
An analysis of the local sources (LS) structure of the S-component of solar radio emission confirms the presence of a core component which is characterized by strong circular polarization and a steep growing spectrum at shorter centimeter wavelengths. These details coincide in position with the sunspots' umbra and their height above the photosphere does not generally exceed about 2000 km. Gyroresonance emission of thermal electrons of the corona is generally accepted as being responsible for this type of emission. The spectral and polarization observations of LS made with RATAN-600 using high resolution in the wavelength range 2.0–4.0 cm, allow us to measure the maximum magnetic fields of the corresponding sunspots at the height of the chromosphere-corona transition region (CCTR). This method is based on determining the short wavelength limit of gyroresonance emission of the LS and relating it to the third harmonic of gyrofrequency.An analysis of a large number of sunspots and their LS (core component) has shown a good correlation between radio magnetic fields near the CCTR and optical photospheric ones. The magnetic field in CCTR above a sunspot is found only 10 to 20% lower than in the photosphere. The resulting gradient of the field strength is not less than 0.25 G km–1. This result seems to contradict the lower values of magnetic fields generally found above sunspots using the chromospheric H line. Some possible ways of overcoming this difficulty are proposed.  相似文献   

19.
The effect of a background signal on the signal-to-noise ratio is discussed, with particular application to ground-based observations of emission lines in the solar corona with the proposed Advanced Technology Solar Telescope. The concepts of effective coronal aperture and effective coronal integration time are introduced. Specific expressions are developed for the 1 measurement errors for coronal intensity, coronal electron density, coronal velocity, and coronal magnetic field measurements using emission lines and including a background.  相似文献   

20.
We present a model which describes the evolution of the energy spectrum of relativistic electrons in supernova remnants, with radiation losses of electrons taken into account. The model can be used to calculate the synchrotron X-ray emission from supernova remnants in the uniform interstellar medium and in the uniform interstellar magnetic field. The importance of various factors in the variations of spatial distributions of nonthermal electrons and their synchrotron emissive capacity is demonstrated. We analyze the errors which arise in the magnetic field strength when it is estimated with the use of the models which ignore the detailed pattern of the evolution of the magnetic field and the electron spectrum behind the shock front in the remnant. The evolution of synchrotron emission spectrum and the ratio between the synchrotron radio and X-ray fluxes from supernova remnants are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号