首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A detailed model was formulated to describe the non-passive transport of water-soluble chemicals in the unsaturated zone and used to illustrate one-dimensional infiltration and redistribution of alcohol–water mixtures. The model includes the dependence of density, viscosity, surface tension, molecular diffusion coefficient in the liquid-phase, and gas–liquid partition coefficient on the aqueous mixture composition. It also takes into account the decrease in the gas–liquid partition coefficient at high capillary pressures, in accordance with Kelvin’s equation for multi-component mixtures. Simulation of butanol–water mixtures infiltration in sand was in agreement with the experimental data and simulations reported in the literature. Simulation of methanol infiltration and redistribution in two different soils showed that methanol concentration significantly affects volumetric liquid content and concentration profiles, as well as the normalized volatilization and evaporation fluxes. Dispersion in the liquid-phase was the predominant mechanism in the transport of methanol when dispersivity at saturation was set to 7.8 cm. Liquid flow was mainly due to capillary pressure gradients induced by changes in volumetric liquid content. However, for dispersivity at saturation set to 0.2 cm, changes in surface tension due to variation in composition induced important liquid flow and convection in the liquid-phase was the most active transport mechanism. When the Kelvin effect was ignored within the soil, the gas-phase diffusion was significantly lower, leading to lower evaporation flux of water and higher volumetric liquid contents near the soil surface.  相似文献   

2.
Infiltration of saline solutions and pure water into homogeneous packs of prewetted and air-dry silica sands was investigated using a light transmission system. Four sand grades and five solutions were considered. Narrow fingers with a sharp, almost saturated, wetting front were observed in the air-dry sands. The water content left behind the fingertip of saline solutions was higher than for pure water, resulting in a greater lateral expansion of the saline fingers over time. The rate of lateral expansion scaled with the square root of time, likely due to classic liquid sorption with the possible addition of water vapor diffusion. At early time, the salty fingers moved faster, but were ultimately overtaken by the pure water fingers. In prewetted sand, the wetting fronts were diffuse and never exceeded 26% saturation, less than third that seen in the initially air-dry media. The plumes in the prewetted sand were also much wider and their shape varied. In the prewetted sand the elevated surface tension of the saline solutions was the major cause for the observed differences in finger width and velocity, yet appeared to be insignificant in air-dry sand. Here, in addition to the density effect, absorption of the saline solution to the silica sand influenced the depth of wetting, finger velocity, and subsequent lateral expansion.  相似文献   

3.
An analytical solution is provided for predicting time dependent seepage into an array of equally spaced parallel ditch drains in a homogeneous and anisotropic soil medium underlain by an impervious layer and receiving water from a ponded horizontal field of infinite extent. The solution can account for both unequal levels of water in the adjacent drains and variable depths of ponding at the soil surface. The validity of the developed model is tested by first reducing it to a steady state solution and then comparing predictions obtained from it for a few flow situations with corresponding predictions obtained from the analytical works of others. A numerical comparison of the developed model for a flow situation is also carried out using MODFLOW. The surface discharge distribution is found to show relatively greater uniformity at the early stages of simulation but with the progress of time, the extent of uniformity is found to reduce particularly for cases where the soil is subjected to a uniform depth of ponding. However, even when a soil surface is subjected to a constant depth of ponding, a high anisotropy ratio (ratio of horizontal to vertical hydraulic conductivity of soil) of the soil alone may lead to a marked improvement on the uniformity of the surface discharge distribution at all times in comparison to a soil having a low anisotropy ratio. A better uniformity of surface discharge may also be achieved by suitably adjusting the depths of ponding over the surface of the soil – regions close to the ditches be provided with zero or negligible depths of ponding and the ponding depths may be made to progressively increase with the increase in distance from the ditch faces. As the developed analytical model is of a general nature, it is hoped that the solution provided herein will lead to a better and realistic design of ditch drainage networks for controlling waterlogged areas and in reclaiming salt affected soils.  相似文献   

4.
5.
Spatial distribution of soil macroporosity was determined for a forest podzol from tension infiltrometer measurements at the soil surface. Surface‐derived macroporosity values were compared with point infiltration characteristics obtained from soil water content and soil water chemistry measurements during an experimental irrigation, and with parameters of a kinematic wave model applied to soil water content data. Macroporosity estimated by the tension infiltrometer ranged from 0·00087 to 0·0219% of soil volume, and infiltration at these two sites was dominated by propagation of a well‐defined wetting front through the soil profile and bypass flow via soil macropores, respectively. Infiltration at sites with intermediate macroporosities reflected a combination of these two processes, although results were inconclusive at one site owing to lateral flow at the base of the soil profile. There was no agreement between macroporosities estimated by the tension infiltrometer and the kinematic wave model. The maximum soil conductance parameter within the profile at a site, however, was related directly to the surface‐derived macroporosity. The partial agreement between surface‐derived macroporosity estimates and point infiltration characteristics shown here supports the use of tension infiltrometry as a rapid, non‐destructive method of assessing spatial variations in the relative contribution of macropore flow to the infiltration process. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The Green–Ampt infiltration equation is an incomplete governing equation for rainfall infiltration due to the absence of an inertia term. The estimation of the capillary pressure head at the wetting front is difficult to determine. Thus, a major limitation of the Green–Ampt model is the constant, non‐zero surface ponding depth. This paper proposes an integrated rainfall infiltration model based on the Green–Ampt model and the SCS‐CN model. It achieves a complete governing equation for rainfall infiltration by momentum balance and the water budget based on the Green–Ampt assumption, and uses the curve number from the SCS‐CN method to calculate the initial abstraction, which is used as a basic parameter for the governing equation of the intensity of rainfall loss during the runoff period. The integrated rainfall infiltration model resolves the dilemma for capillary pressure head estimation, overcomes the limitation of constant, non‐zero surface ponding depth, and facilitates the calculation of runoff for individual flood simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Two different canopy interception schemes are applied to the parameterization of the hydrological processes in the Community Land Model version 3. One scheme treats rainfall and canopy water storage as spatially uniform within each model grid cell, and the other scheme considers sub‐grid variability of rainfall and water storage in the parameterization of canopy hydrological processes. The hydrological responses to differences between these two schemes in different regions are studied. It is found that the impact of the sub‐grid variability in the tropical regions is generally greater than the extra‐tropical regions. However, such impact can't be negligible for the extra‐tropical regions. Soil water in the total 3.4 m soil depth increases by 3% for Central‐South Europe, and vegetation temperature increases by 0.14 °C for Southeastern United States if the regional averages are considered. The magnitude of the impact is greater if the analysis focuses on the specific grid cells in these regions. The impact is tightly correlated with rainfall amount and vegetation density. The correlation coefficient between such impact and rainfall amount and vegetation density varies with regions and hydrological variables, with the largest value of 0.92 for interception loss in Amazonia. Our results indicate that the impact of the sub‐grid variability on hydrological processes in the extra‐tropical areas is also important, although rainfall amount and vegetation density in these areas are not as high as in the tropical areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A refined substructure technique in the frequency domain is developed, which permits consideration of the interaction effects among adjacent containers through the supporting deformable soil medium. The tank‐liquid systems are represented by means of mechanical models, whereas discrete springs and dashpots stand for the soil beneath the foundations. The proposed model is employed to assess the responses of adjacent circular, cylindrical tanks for harmonic and seismic excitations over wide range of tank proportions and soil conditions. The influence of the number, spatial arrangement of the containers and their distance on the overall system's behavior is addressed. The results indicate that the cross‐interaction effects can substantially alter the impulsive components of response of each individual element in a tank farm. The degree of this impact is primarily controlled by the tank proportions and the proximity of the predominant natural frequencies of the shell‐liquid‐soil systems and the input seismic motion. The group effects should be not a priori disregarded, unless the tanks are founded on shallow soil deposit overlying very stiff material or bedrock. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Improved estimates of the amount of subsurface gas hydrates are needed for natural resource, geohazard, and climate impact assessments. To evaluate gas hydrate saturation from seismic methods, the properties of pure gas hydrates need to be known. Whereas the properties of sediments, specifically sands, and hydrate‐bearing sediments are well studied, the properties of pure hydrates are largely unknown. Hence, we present laboratory ultrasonic P‐wave velocity and attenuation measurements on pure tetrahydrofuran hydrates as they form with reducing temperatures from 25°C to 1°C under atmospheric pressure conditions. Tetrahydrofuran hydrates, with structure II symmetry, are considered as proxies for the structure I methane hydrates because both have similar effects on elastic properties of hydrate‐bearing sediments. We find that although velocity increased, the waveform frequency content and amplitude decreased after the hydrate formation reaction was complete, indicating an increase in P‐wave attenuation after hydrate formation. When the tetrahydrofuran hydrate was cooled below the freezing point of water, velocity and quality factor increased. Nuclear Magnetic Resonance results indicate the presence of water in the “pure hydrate” samples above the water freezing point, but none below. The presence of liquid water between hydrate grains most likely causes heightened attenuation in tetrahydrofuran hydrates above the freezing point of water. In naturally occurring hydrates, a similarly high attenuation might relate to the presence of water.  相似文献   

10.
V. Grace Mitchell 《水文研究》2007,21(21):2850-2861
As the concept of sustainable urban water management is incorporated into the practice of urban water resource managers, actions, such as the utilization of roof runoff via rainwater tanks, which have multiple benefits, are increasingly being built into urban water systems. Modelling tools are frequently used to predict the yield from rainwater tanks and to estimate the storage capacity required to achieve a given potable supply reduction level, with these estimates used in both urban water resources policy development and engineering design. Therefore, it is important that the accuracy of commonly used models is understood. This paper investigates the impact of computational time step, computational operating rule, initial storage level, and the length of simulation period on the accuracy of the storage–yield–reliability relationship calculated using a simple rainwater tank behaviour model. Four time steps (ranging from 6 min to 24 h), two operational rules (supply before spillage and supply after spillage), two initial storage level states (empty and full), and three simulation periods (50 years, 10 years and 1 year) were applied to a wide range of rainwater tank system configurations and three different locations in Australia. It was found that the supply‐after‐spillage computational operating rule is preferable, while the ratio of the average demand volume in a single computational time step divided by the storage capacity (ΔD/S) can be used to assess whether a given combination of demand, storage, inflow, and computational time step will provide long‐term yield estimates that are within ± 5% of the values produced by a simulation that used a 50‐year time series of climate, 6‐min time step, and a supply‐after‐spillage operational rule (50‐6‐YAS). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper discusses the effects of water quality on the hydrological and erosion response of non‐saline, non‐sodic soils during simulated rain experiments. It is well known that rain water quality affects the behaviour of saline soils. In particular, rain simulation experiments cannot be run using tap water if realistic values of infiltration rates and soil erosion are to be found. This paper reports on similar effects for non‐saline, non‐sodic soils. Two soils – a well‐aggregated clay‐rich soil developed on marine silty clay deposits and a soil developed on silt loam – were selected and subjected to a series of simulated rainstorms using demineralized water and tap water. The experiments were conducted in two different laboratories in order to obtain results independent of the tap water quality or the rainfall simulator characteristics. The results indicate that time‐to‐ponding is largely delayed by solute‐rich water (tap water). When tap water is used, infiltration rates are significantly overestimated, i.e. by more than 100 per cent. Interrill erosion rates increase by a factor of 2·5–3 when demineralized water is used. The silty clay soil was more affected by the water quality than the silt loam soil, with respect to infiltration and runoff production. Regarding interrill erosion rates, the two tested soils were similarly affected by the water quality. Therefore, it can be concluded that rainfall simulation experiments with non‐dispersive soils (e.g. non‐saline, non‐sodic) must also be conducted using water with very low electrical conductivity (i.e. less than 30–50 µS cm−1), close to that of distilled water. The use of tap water certainly hampers comparisons and the relative ranking of the hydrological and erosion response of different soils, while parameter values, such as final infiltration rate or time‐to‐ponding, cannot be extrapolated and extended to natural situations. Therefore, the majority of hydrological and erosion models and parameter values measured during rainfall simulations in the past should be used with caution for all types of soils. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
To assess recharge through floodwater spreading, three wells, approx. 30 m deep, were dug in a 35-year-old basin in southern Iran. Hydraulic parameters of the layers were measured. One well was equipped with pre-calibrated time domain reflectometry (TDR) sensors. The soil moisture was measured continuously before and after events. Rainfall, ponding depth and the duration of the flooding events were also measured. Recharge was assessed by the soil water balance method, and by calibrated (inverse solution) HYDRUS-1D. The results show that the 15 wetting front was interrupted at a layer with fine soil accumulation over a coarse layer at the depth of approx. 4 m. This seemed to occur due to fingering flow. Estimation of recharge by the soil water balance and modelling approaches showed a downward water flux of 55 and 57% of impounded floodwater, respectively.  相似文献   

14.
Leaching through subsurface drainage systems has been widely adopted to ameliorate saline soils. The application of this method to remove salt from reclaimed lands in the coastal zone, however, may be impacted by macro-pores such as crab burrows, which are commonly distributed in the soils. We developed a three-dimensional model to investigate water flow in subsurface drainage systems affected by macro-pores distributed deterministically and randomly through Monte Carlo simulations. The results showed that, for subsurface drainage systems under the condition of continuous surface ponding, macro-pores increased the hydraulic head in the deep soil, which in turn reduced the hydraulic gradient between the surface and deep soil. As a consequence, water infiltration across the soil surface was inhibited. Since salt transport in the soil is dominated by advection, the flow simulation results indicated that macro-pores decreased the efficiency of salt leaching by one order of magnitude, in terms of both the elapsed time and the amount of water required to remove salt over the designed soil leaching depth (0.6 m). The reduction of the leaching efficiency was even greater in drainage systems with a layered soil stratigraphy. Sensitivity analyses demonstrated that with an increased penetration depth or density of macro-pores, the leaching efficiency decreased further. The revealed impact of macro-pores on water flow represents a significant shortcoming of the salt leaching technique when applied to coastal saline soils. Future designs of soil amelioration schemes in the coastal zone should consider and aim to minimize the bypassing effect caused by macro-pores.  相似文献   

15.
Overland flow detectors (OFDs) were deployed in 2012 on a hillslope burned by the 2010 Fourmile Canyon fire near Boulder, Colorado, USA. These detectors were simple, electrical resistor‐type instruments that output a voltage (0–2·5 V) and were designed to measure and record the time of runoff initiation, a signal proportional to water depth, and the runoff hydrograph during natural convective rainstorms. Initiation of runoff was found to be spatially complex and began at different times in different locations on the hillslope. Runoff started first at upstream detectors 56% of the time, at the mid‐stream detectors 6%, and at the downstream detectors 38% of the time. Initiation of post‐wildfire runoff depended on the time‐to‐ponding, travel time between points, and the time to fill surface depression storage. These times ranged from 0·5–54, 0·4–1·1, and 0·2–14 minutes, respectively, indicating the importance of the ponding process in controlling the initiation of runoff at this site. Time‐to‐ponding was modeled as a function of the rainfall acceleration (i.e. the rate of change of rainfall intensity) and either the cumulative rainfall at the start of runoff or the soil–water deficit. Measurements made by the OFDs provided physical insight into the spatial and temporal initiation of post‐wildfire runoff during unsteady flow in response to time varying natural rainfall. They also provided data that can be telemetered and used to determine critical input parameters for hydrologic rainfall–runoff models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The stable isotopes of hydrogen and oxygen (δ2H and δ18O) are useful conservative tracers for tracking the movement of water in soil. But although the tracking of water infiltrating through the soil profile and its movement as run‐off and groundwater recharge are well developed, water movement through the soil can also include evaporative fractionation. Soil water fractionation factors have, until now, been largely empirical. Unlike open water evaporation where temperature, humidity, and vapour pressure gradient define fractionation, soil water evaporation includes fractionation by soil matrix effects. These effects are still poorly characterized. Here, we present preliminary results from a simple laboratory experiment with four soil admixtures with grain sizes that range from sand to silt and clay. Our results show that soil tension seems to control the isotope fractionation of resident soil water. The relationship between soil tension and equilibrium fractionation appears to be independent of soil texture and appears well supported by thermodynamic theory. Although these results are preliminary, they suggest that future work should go after soil tension effects as a possible explanatory factor of soil water and water vapour fractionation.  相似文献   

17.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   

18.
The hydraulic characteristics of the plough pan of paddy fields provide continuous ponding conditions during the growing season and control the water use efficiency in wet rice production. Its saturated hydraulic conductivity Ks, however, exhibits a large spatiotemporal variability as a consequence of a highly dynamic soil structure involving temporary shrinkage cracks. Water flow through the earthen bunds surrounding the fields further contributes to the uncertainty in water flux calculations. The objective of this study was to develop a simple deterministic model with stochastic elements (‘PADDY‐FLUX’) for depiction of deep percolation, and to assess the effect of different water management scenarios on percolation in two channel command areas. Darcy's law is used as the fundamental equation for water flow calculations with the ponding water depth h as a time‐dependent variable. Flux uncertainty is estimated by a Monte‐Carlo‐type implementation. Ks is treated as a random variable of a bimodal probability density function (PDF), which is the weighted sum of two Gaussian PDFs (accounting for a matrix and a preferential flow domain). The weighing factor α is a function of h, reflecting an increasing risk for preferential flow situations after desiccation and the development of shrinkage cracks. Under‐bund percolation is calculated using transfer functions. The results demonstrate that percolation losses increase in the following order: continuous soil saturation < continuous flooding (CF) < mid‐season drainage and intermittent irrigation (MD + II) < mid‐season drainage and continuous flooding. The bunds contribute up to 54 and 17% to total fluxes under CF and MD + II, respectively. Preferential water fluxes are responsible for the major part of water losses as soon as desiccation causes the formation of shrinkage cracks. As a conclusion, continuous soil saturation should be promoted as the least water‐intensive irrigation regime, while intermittent irrigation is recommended only in case that irreversible shrinkage cracks have already developed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The occurrence of water ponding on soil surfaces during and after heavy rainfall produces surface run‐off or surface water accumulation in low‐lying areas, which might reduce the water supply to soils and result in a reduction of the soil water that plants can use, especially in arid climates. On Mongolian rangeland, we observed ponded water on the surface of a specific soil condition subjected to a heavy rainfall of 30 mm/hr. By contrast, ponded water was not observed for the same type of soil where livestock grazing had been removed for 6–8 years via a fence or for nearby soil containing less clay. We measured the infiltration rate (the saturated hydraulic conductivity of the surface soil, Ks) of the three sites by applying ponded water on the soil surface (an intake rate test). The results showed that Ks in the rangeland was lower than the rainfall intensity in the site where water ponded on the soil surface; however, Ks of the soil inside of the fence has recovered to 3 times that of the soil outside of the fence to exceed the rainfall intensity. Heavy rainfall that exceeds the infiltration rate occurs several times a year at the livestock grazing site where we observed ponded water. Slight water repellency of the soil reduces rain infiltration to increase the possibility of surface ponding for the soil.  相似文献   

20.
Using a coupled large‐eddy simulation–land surface model framework, the impact of two‐dimensional soil moisture heterogeneity on the cloudy boundary layer under varied free‐atmosphere stabilities is investigated. Specifically, the impacts of soil moisture heterogeneity length scale and heterogeneity in terms of soil moisture gradients on micrometeorological states, surface fluxes, boundary layer characteristics, and cloud development are examined. The results show that mesoscale circulations due to surface heterogeneity in soil moisture play an important role in transferring water vapour within the boundary layer and in regulating cloud distribution at the entrainment zone, which, in turn, provides feedbacks on boundary layer/surface energy budgets. The initial domain‐averaged soil moisture is identical for all homogenous and heterogeneous cases; however, the soil moisture heterogeneity in gradient and length scale between dry and wet regions has a significant impact on the estimates of near‐surface micrometeorological properties and surface fluxes, which further affect the boundary layer states and characteristics. Both liquid water potential temperature and liquid water mixing ratio increase with an increasing soil moisture gradient, whereas the amount of specific humidity decreases. Heterogeneity length scale and free atmosphere stability also amplify these impacts on the boundary layer structure and cloud formation. In a low atmospheric stability condition that potentially allows for a deeper boundary layer and a higher entrainment rate, cloud base height and cloud thickness significantly increase as the soil moisture gradient and length scale increase. Analysis to differentiate the influences of surface heterogeneity type (i.e. length scale vs gradient) shows that in general soil moisture gradient provides a larger impact than heterogeneity length scale, although the heterogeneity length scale is large enough to initiate circulation features responsible for differences in the coupled system between homogeneous and heterogeneous soil moisture cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号