共查询到20条相似文献,搜索用时 13 毫秒
1.
Summary 38 oriented samples of Deccan Traps have been collected from the neighbourhood of Chincholi, Mysore State, India. The Natural Remanent Magnetisation of these rocks has been studied using an astatic magnetometer. It has been found that these rocks are magnetically reversed, the mean magnetic direction being N154°E in declination and 61° down in inclination. Thermoremanance studies conducted on four specimens showed that two specimens with weak NRM and a high secondary magnetisation have Curie temperatures around 560°C for the NRM and exhibited partial reversal of TRM at room temperature, while two specimens with high NRM and with little secondary magnetisation have Curie temperatures much lower than 560°C for the NRM. 相似文献
2.
The present study is probably the first of its kind in the Deccan Volcanic Province (DVP) that deals in detail with the morphology and emplacement of the Deccan Trap flows, and employs modern terminology and concepts of flow emplacement. We describe in detail the two major types of flows that occur in this province. Compound pahoehoe flows, similar to those in Hawaii and the Columbia River Basalts (CRB) constitute the older stratigraphic Formations. These are thick flows, displaying the entire range of pahoehoe morphology including inflated sheets, hummocky flows, and tumuli. In general, they show the same three-part structure associated with pahoehoe flows from other provinces. However, in contrast to the CRB, pahoehoe lobes in the DVP are smaller, and hummocky flows are quite common. 'Simple' flows occur in the younger Formations and form extensive sheets capped by highly vesicular, weathered crusts, or flow-top breccias. These flows have few analogues in other provinces. Although considered to be a'a flows by previous workers, the present study clearly reveals that the simple flows differ considerably from typical a'a flows, especially those of the proximal variety. This is very significant in the context of models of flood basalt emplacement. At the same time, they do not display direct evidence of endogenous growth. Understanding the emplacement of these flows will go a long way in determining whether all extensive flows are indeed inflated flows, as has recently been postulated.Most of the studies relating to the emplacement of Continental Flood Basalt (CFB) lavas have relied on observations of flows from the CRB. Much of the current controversy surrounding the emplacement of CFB flows centers around the comparison of Hawaiian lava flows to those from the CRB. We demonstrate that the DVP displays a variety of lava features that are similar to those from the CRB as well as those from Hawaii. This suggests that there may have been more than one mechanism or style for the emplacement of CFB flows. These need to be taken into account before arriving at any general model for flood basalt emplacement.Editorial responsibility: T. Druitt 相似文献
3.
Francisco Herve Francisco Munizaga Estanislao Godoy Luis Aguirre 《Earth and Planetary Science Letters》1974,23(2):261-264
Two crossite concentrates and one blueschist whole rock were analyzed by the K/Ar method. These samples belong to the high/intermediate pressure Western Series of the Chilean metamorphic basement and, in this area, are intruded by a small monzonite body.Ages obtained were 211 m.y. and 329 m.y. for the mineral concentrates and 211 m.y. for the whole rock. Discussion based on crystal size as a factor for retention of40Ar during localized re-heating of the metamorphic rocks due to the monzonitic intrusion leads to the acceptance of 329 m.y. as the minimum age of crossite crystallization. This age agrees with the whole rock Rb/Sr limiting reference isochrons (273–342 m.y.) previously obtained for the metamorphic basement of Central Chile which did not include samples of the present area.This age provides the first evidence of a Paleozoic blueschist assemblage in the eastern Pacific border and would suggest the existence of a Late Paleozoic subduction zone along the western margin of South America. 相似文献
4.
Ichiro Kaneoka 《Earth and Planetary Science Letters》1980,46(2):233-243
40Ar/39Ar dating results on seven volcanic rocks from four areas of the Deccan Traps, India, suggest that volcanic activity more than 70 Ma ago might have occurred at least in limited areas.In the Igat Puri area, the uppermost flow shows an40Ar/39Ar age of 63 Ma, whereas a lower flow has an age of around 82–84 Ma.40Ar/39Ar ages of samples from the Bombay area also seem to favor the occurrence of volcanic activity more than 70 Ma ago. One rhyolite dyke from the Osam Hill in the Girnar Hill area shows a well-defined plateau age of 68 Ma, whereas two tholeiitic basalts from the Mahabaleshwar area indicate a total40Ar/39Ar age of around 63–64 Ma, though they show the effect of secondary disturbance in the age spectra.The volcanic activity(ies) more than 70 Ma ago may correspond to precursory one(s) for the main volcanic activity around 65 Ma ago in the Deccan Traps. 相似文献
5.
The results of remanent magnetic studies on eight of the nine Deccan Trap flows in the vicinity of Sagar (23°56′ N: 78°38′ E) are presented. It is found that the lower four flows in the sequence are of ‘reversed’ magnetic polarity. Of the upper four flows, the top and the bottom ones show ‘intermediate’ directions while the two flows sandwiched between these are ‘normal’. These results suggest a transitional stage between the polarity inversion of the geomagnetic field from ‘reversed’ to ‘normal’ during the eruption of these Deccan Trap flows. The remanent magnetic directions of these ‘reversed’ and ‘normal’ flows show fairly shallow inclinations and are comparable to the remanent magnetic directions of the Pavagarh basalts. 相似文献
6.
Hervé Guillou Juan Carlos Carracedo Francisco José Pérèz Torrado 《Earth and Planetary Science Letters》2004,222(2):599-614
The combined use of field geology, radioisotopic dating and magnetic stratigraphy applied to the old shield volcanoes of Tenerife provides a reliable time framework for the early, shield-stage evolution of the island. The greater part of this new set of ages, obtained from sequences of lava flows is in agreement with the astronomical polarity time scale. This approach illustrates that previous K-Ar data collected without a comprehensive stratigraphy should be viewed with caution, and in some cases discarded altogether. The shield volcanoes of Tenerife encompass a relatively small number of magnetozones, an observation consistent with the relatively short periods of growth shown by the new ages (1-2 my). The island was constructed by the aggregation of three successive shields: the Roque del Conde (Central shield), between about 11.9 and 8.9 Ma, and the Teno (6.2-5.6 Ma) and Anaga (4.9-3.9 Ma) volcanoes. This new oldest subaerial age of Tenerife fits with the others obtained in the Canaries in a clear west to east monotonous age progression, one of the main restrictions for hotspot-related island chains. 相似文献
7.
8.
9.
Gilbert Feraud Ishiro Kaneoka Claude Jean Allègre 《Earth and Planetary Science Letters》1980,46(2):275-286
We have dated by the K/Ar method the oldest volcanic formations known in the Azores archipelago. The results show a development of this oceanic island system from 5.5 m.y. to the present day.The age pattern is not compatible with a simple migration over a small fixed hot spot, but, plotting tectonic directions which control the volcanism versus age and distance to the Mid-Atlantic Ridge, a simple relationship seems to appear showing an anisotropic but fixed distribution of stress orientation at least for the last 0.7 m.y. 相似文献
10.
Mafic alkalic magmatism in central Kachchh,India: a monogenetic volcanic field in the northwestern Deccan Traps 总被引:1,自引:0,他引:1
Magmatism in Kachchh, in the northwestern Deccan continental flood basalt province, is represented not only by typical tholeiitic
flows and dikes, but also plug-like bodies, in Mesozoic sandstone, of alkali basalt, basanite, melanephelinite and nephelinite,
containing mantle nodules. They form the base of the local Deccan stratigraphy and their volcanological context was poorly
understood. Based on new and published field, petrographic and geochemical data, we identify this suite as an eroded monogenetic
volcanic field. The plugs are shallow-level intrusions (necks, sills, dikes, sheets, laccoliths); one of them is known to
have fed a lava flow. We have found local peperites reflecting mingling between magmas and soft sediment, and the remains
of a pyroclastic vent composed of non-bedded lapilli tuff breccia, injected by mafic alkalic dikes. The lapilli tuff matrix
contains basaltic fragments, glass shards, and detrital quartz and microcline, with secondary zeolites, and there are abundant
lithic blocks of mafic alkalic rocks. We interpret this deposit as a maar-diatreme, formed due to phreatomagmatic explosions
and associated wall rock fragmentation and collapse. This is one of few known hydrovolcanic vents in the Deccan Traps. The
central Kachchh monogenetic volcanic field has >30 individual structures exposed over an area of ∼1,800 km2 and possibly many more if compositionally identical igneous intrusions in northern Kachchh are proven by future dating work
to be contemporaneous. The central Kachchh monogenetic volcanic field implies low-degree mantle melting and limited, periodic
magma supply. Regional directed extension was absent or at best insignificant during its formation, in contrast to the contemporaneous
significant directed extension and vigorous mantle melting under the main area of the Deccan flood basalts. The central Kachchh
field demonstrates regional-scale volcanological, compositional, and tectonic variability within flood basalt provinces, and
adds the Deccan Traps to the list of such provinces containing monogenetic- and/or hydrovolcanism, namely the Karoo-Ferrar
and Emeishan flood basalts, and plateau basalts in Saudi Arabia, Libya, and Patagonia. 相似文献
11.
Geology of the saucer-shaped sill near Mahad, western Deccan Traps, India, and its significance to the Flood Basalt Model 总被引:1,自引:0,他引:1
An ~22-m-thick saucer-shaped sill occurs near Mahad and is exposed as a curvilinear, miniature ridge within the Deccan Traps. The sill has variable dips (42–55°). It has a 7.1-km long axis and 5.3 km short axis (aspect ratio of 1.4) and is larger than the MV sill of the Golden Valley sill complex, South Africa and the Panton sill, Australia. The sill has distinct glassy upper and lower chilled margins with a coarse-grained highly jointed core. The samples from the margin are invariably fractured and iron stained because of deuteric alteration. The rock from the sill is plagioclase-phyric basalt. At least three thick sill-like apophyses emanate from the base of the main sill. The apophyses change direction because of bending and thinning from a horizontal concordant sheet at the top to a discordant inclined form that bends again to pass into a lower horizontal concordant sheet. We interpret such features as ‘nascent saucer-shaped sills’ that did not inflate to form nested sills. Geochemically, the sill consists of poorly differentiated tholeiitic basalt that has a restricted geochemical range. Critical trace element ratios and primitive mantle normalised trace and REE patterns indicate that the sills have geochemical affinities to the Poladpur chemical type and that the pahoehoe flow they intrude belongs to the Bushe Formation. Calculated magmatic overpressures during sill emplacement range from 8.4 to 11.3 MPa (for Young’s modulus E?=?5 GPa) and 16.7 to 22.5 MPa (for E=10 GPa) and depth to magma chamber ranges from 8.5 to 11.5 km (E?=?5 GPa) and 17.1 to 22.9 km (E?=?10 GPa), consistent with petrological and gravity modelling. The volume of the Mahad sill is approximately 276 km3 and is constant irrespective of the variations in the values of host-rock Young’s modulus. In 1980, Cox (J Petrol 21:629–650, 1980) proposed a conceptual model of the crust–mantle section beneath the Karoo CFB which is considered as the fundamental model for flood basalt volcanism. Our paper confirms the presence of a sill plus the inferred substructure beneath Mahad that are compatible with predictions of that model. In LIPS, saucer-shaped sills are formed in areas experiencing extensional tectonics where processes such as the Cook–Gordon delamination and Dundurs elastic extensional mismatch between layered sedimentary rocks or lava flows are responsible for the deflection of dykes into sills. A similar process is envisaged for the formation of the Mahad sill. 相似文献
12.
13.
Precise 40Ar/39Ar age determinations made on basalt groundmass collected from the SP and upper and lower Bar Ten lava flows in the San Francisco and Uinkaret volcanic fields of Arizona, USA, yield ages of 72 ± 4, 97 ± 10, and 123 ± 12 ka (2σ; relative to Renne et al., 2010, 2011, full external precision), respectively. Previous ages of the SP lava flow include a K–Ar age of 70 ± 8 ka and OSL ages of 5.5–6 ka. 40Ar/39Ar age constraints, relative to the optimization model of Renne et al. (2010, 2011), of 81 ± 50 and 118 ± 64 ka (2σ; full external precision) were previously reported for the upper and lower Bar Ten lava flows, respectively. The new 40Ar/39Ar ages are within uncertainty of previous age constraints, and are more robust, accurate, and precise. Preliminary cosmogenic 3He and 21Ne production rates from the Bar Ten flows reported by Fenton et al. (2009) are updated here, to account for the improved quality of the 40Ar/39Ar data. The new 40Ar/39Ar age for the SP flow yields cosmogenic 3He and 21Ne production rates for pyroxene (119 ± 8 and 26.8 ± 1.9 at/g/yr; error-weighted mean, 2σ uncertainty; Dunai (2000) scaling method) that are consistent with production rate values reported throughout the literature. The 40Ar/39Ar and cosmogenic 3He and 21Ne data support field observations indicating the SP flow has undergone negligible erosion. The SP flow contains co-existing phenocrysts of olivine and pyroxene, as well as xenocrysts of quartz in a fine-grained groundmass facilitating cross-calibration of cosmogenic production rates and production-rate (3He, 10Be, 14C, 21Ne, 26Al, and 36Cl). Thus, we propose the SP flow is an excellent location for a cosmogenic nuclide production-rate calibration site (SPICE: the SP Flow Production-Rate Inter-Calibration Site for Cosmogenic-Nuclide Evaluations). 相似文献
14.
Spherulites and thundereggs are rounded, typically spherical, polycrystalline objects found in glassy silicic rocks. Spherulites
are dominantly made up of radiating microscopic fibers of alkali feldspar and a silica mineral (commonly quartz). They form
due to heterogeneous nucleation in highly supercooled rhyolitic melts or by devitrification of glass. Associated features
are lithophysae (“stone bubbles”), which have an exterior (sometimes concentric shells) of fine quartz and feldspar, and internal
cavities left by escaping gas; when filled by secondary silica, these are termed thundereggs. Here, we describe four distinct
occurrences of spherulites and thundereggs, in pitchstones (mostly rhyolitic, some trachytic) of the Deccan Traps, India.
The thundereggs at one locality were previously misidentified as rhyolitic lava bombs and products of pyroclastic extrusive
activity. We have characterized the thundereggs petrographically and geochemically and have determined low contents of magmatic
water (0.21–0.38 wt.%) in them using Fourier transform infrared spectroscopy. We consider that the spherulite-bearing outcrops
at one of the localities are of lava flows, but the other three represent subvolcanic intrusions. Based on the structural
disposition of the Deccan sheet intrusions studied here and considerations of regional geology, we suggest that they are cone
sheets emplaced from a plutonic center now submerged beneath the Arabian Sea. 相似文献
15.
The Meseta and Fuego volcanoes closely overlap and collectively are known as the Fuego Volcanic Complex. Historic activity occurs exclusively at Fuego, the southern center, and consists of high-Al basalts. Meseta, the inactive northern center, is predominantly composed of basaltic andesites with minor basalt and andesite. A thick sequence of lava flows and dikes is exposed by a steep collapse escarpment on the east flank of Meseta. The upper 75% of the sequence was sampled from three interfingering stratigraphic sections consisting of 27, 10 and 4 lavas, respectively. Temporal geochemical trends of each section indicates a complex evolutionary history. A major trend toward more evolved compositions upward in the section is consistent with crystal fractionation. This trend is sharply interrupted by the youngest lavas which become distinctly more mafic in composition. Magma mixing is apparently the dominant magmatic evolution process that generated these lavas. The two trends have distinct Sr signatures that suggest a change in parental magma compositions. This abrupt change in composition is interpreted to signal high input rates of mafic magma into the subvolcanic magma chamber. These changes eventually led to sector collapse of Meseta volcano and deposition of the Escuintla debris avalanche. Eruptive activity then migrated to the Fuego volcano where historic activity is similar to that of Meseta immediately prior to its collapse. 相似文献
16.
Raymond A. Duraiswami Ninad R. Bondre Gauri Dole Vinit M. Phadnis Vivek S. Kale 《Bulletin of Volcanology》2001,63(7):435-442
Whale-back-shaped uplifts called "tumuli" are common in the pahoehoe flows of the western Deccan Volcanic Province (DVP). Although they usually occur in hummocky flows, they are also associated with thicker sheet lobes. They have been subjected to a detailed morphometric and petrographic study for the first time. The tumuli are characterised by positive relief and "lava-inflation clefts" occupied by squeeze-ups. They display elongate as well as equant forms; some are constituted of a single flow lobe, whereas others display multiple flow lobes. Some tumuli appear to have developed along anastomosing tube systems. The detailed study of one of the tumuli reveals considerable petrographic and textural variations among the constituent flow units. Some of these, such as the enrichment of phenocrysts in squeeze-ups and breakouts, could be related to the emplacement dynamics of the tumulus. All the observed tumuli display much evidence of inflation or endogenous growth. Field observations and measurements reveal that the tumuli and associated pahoehoe features display a close similarity with their Hawaiian counterparts. This is a very significant observation since it points out to a similarity in nature and style of eruptions in Hawaii and at least in the western part of the DVP. This has an important bearing on determining the short, medium and long-term effusion rates in the Deccan; however, any concrete inference will have to await systematic volcanological studies of the lava features in the DVP. 相似文献
17.
The Pliocene-Holocene Newer Volcanic Province (NVP) of southeastern Australia is an extensive, relatively well-preserved, intra-plate basaltic lava field containing more than 400 eruptive centres. This study reports new, high-precision 40Ar/39Ar ages for six young (300–600 ka) basalt flows from the NVP and is part of a broader initiative to constrain the extent, duration, episodicity and causation of NVP volcanism. Six fresh, holocrystalline alkali basalt flows were selected from the Warrnambool-Port Fairy area in the Western Plains sub-province for 40Ar/39Ar dating. These flows were chosen on the basis of pre-existing K-Ar age constraints, which, although variable, indicated eruption during a period of apparent relative volcanic quiescence (0.8–0.06 Ma).40Ar/39Ar ages were measured on multiple aliquots of whole rock basalt samples. Three separate flows from the Mount Rouse volcanic field yielded concordant 40Ar/39Ar age results, with a mean eruption age of 303 ± 13 ka (95% CI). An older weighted mean age of 382 ± 24 ka (2σ) was obtained for one sample from the central Rouse-Port Fairy Flow, suggesting extraneous argon contamination. Two basalt flows from the Mount Warrnambool volcano also yielded analogous results, with an average 40Ar/39Ar age of 542 ± 17 ka (95% CI). The results confirm volcanic activity during the interval of relative quiescence. Most previous K-Ar ages for these flows are generally older than the weighted mean 40Ar/39Ar ages, suggesting the presence of extraneous 40Ar. This study demonstrates the suitability of the 40Ar/39Ar incremental-heating method to obtain precise eruption ages for young, holocrystalline alkali basalt samples in the NVP. 相似文献
18.
Catherine L. Johnson Jan R. Wijbrans Catherine G. Constable Jeff Gee Hubert Staudigel Lisa Tauxe Victor-H. Forjaz Mrio Salgueiro 《Earth and Planetary Science Letters》1998,160(3-4):637-649
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction. 相似文献
19.
D. N. Avasthi G. Ramakotaiah S. Varadarajan N. D. J. Rao G. N. Behl 《Bulletin of Volcanology》1971,35(3):743-749
In the attempt to study the buried Deccan Trap layers in the Cambay Basin, the ground magnetic surveys have not been very useful as the data combine the effect due to the crystalline basement and the Trap thickness. In some parts of the basin, some reflections in the seismograms obtained in the course of seismic surveys, could be correlated to the Trap surface. These can be tied with wells drilled in the basin upto the Traps. The synthesis of the gravity and seismic data has enabled us to prepare a map of the Trap surface in the Cambay basin. The depth of the Trap surlace increases from about 2000 m in the northern part of the basin to about 600 m in its deepest part near Broach. The Trap surface rises gradually south of Narbada in an average direction of SE with depths running from 2500 m to 500 m. The interpretation of the gravity anomalies, assuming their cause to be the variations in the thickness of the Trap, has enabled the determination of the average thickness of the Traps in the basin. The maximum thickness of the Trap is in the central part of the basin and is estimated to be about 2.4 km. The Traps appear to gradually taper towards the flanks of the basin. 相似文献
20.
Deccan Traps are the most extensive geological formations of Deccan Peninsula with the exception of only the metamorphic and igneous complex of Archaean age. Based on their mode of emplacement, geomorphic setting and hydrogeological behaviour over an area of about 5,000 sq. km the authors have classified the Deccan Traps of western Maharashtra into 3 groups, namely, (1) The Deccan Traps of Dhulia district, characterised by numerous dolerite dykes, (2) Areally extensive trap flows of Sholapur and Osmanabad districts resulting from slow and quiescent type of flood eruption occupyng the gently undulating terrain, and (3) the traps of Kolaba, Thana and Bombay-Poona regions characterised by intertrappean sediments, dolerite dykes and volcanic ash beds, indicative of violent outbursts resulting in the Sahyadri geomorphologic unit. The groundwater possibilities in the three groups are to a great extent governed by the nature and constitution of the individual flows. The massive traps with their fracture porosities, the vesicular traps with their minutely interconnected and partly filled vesicles and the intertrappen sediments with their primary porosities play a decisive role in determining the groundwater possibilities in them. In Dhulia district the dolerite dykes to a great extent control the movement of groundwater, and success or otherwise of the well field area depends very much upon its location with reference to adjacent dykes. Areally extensive thick vesicular traps with their gentle dips towards east, in Sholapur district, have to be explored for possible artesian conditions in the downdip directions of the trappean units to be tapped. In the case of Poona, Thana and Kolaba districts, exploratory drilling based on geophysical data (to delineate the nature and extent of water bearing horizons) has to be resorted to. It is, therefore, imperative to sub-divide at this stage Taylor’s Single Unit of Deccan Trap Groundwater Province into 3 Sub-Provinces, based on geomorphological, geological and geohydrological setting in the region of western Maharashtra of the present investigation. 相似文献