首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract– Physical properties of multidomain magnetite‐bearing porous pellets shocked up to 45 GPa were measured. The results show general magnetic softening as a result of shock. However, a relative magnetic hardening trend and slight magnetic susceptibility decrease is observed with increasing pressure among shocked samples. Initially, the shock also seems to cause a slight decrease in porosity, but at higher shock pressures macroscopic porosity increases progressively in our pellets. The microscopic porosity remains almost unchanged. Since our samples have distinctly higher initial porosity compared with samples used in previous studies, our results may be representative for impacts into highly porous magnetite‐bearing sedimentary or volcanic rocks and are relevant to impacts into such target rocks on Earth and Mars.  相似文献   

2.
3.
Abstract– Shock recovery experiments were performed with an explosive set‐up in which three types of microorganisms embedded in various types of host rocks were exposed to strong shock waves with pressure pulse lengths of lower than 0.5 μs: spores of the bacterium Bacillus subtilis, Xanthoria elegans lichens, and cells of the cyanobacterium Chroococcidiopsis sp. 029. In these experiments, three fundamental parameters were systematically varied (1) shock pressures ranging from 5 to 50 GPa, (2) preshock ambient temperature of 293, 233 and 193 K, and (3) the type of host rock, including nonporous igneous rocks (gabbro and dunite as analogs for the Martian shergottites and chassignites, respectively), porous sandstone, rock salt (halite), and a clay‐rich mineral mixture as porous analogs for dry and water‐saturated Martian regolith. The results show that the three parameters have a strong influence on the survival rates of the microorganisms. The most favorable conditions for the impact ejection from Mars for microorganisms would be (1) low porosity host rocks, (2) pressures <10–20 GPa, and (3) low ambient temperature of target rocks during impact. All tested microorganisms were capable of surviving to a certain extent impact ejection in different geological materials under distinct conditions.  相似文献   

4.
Abstract— t‐Impact‐generated glasses from fallout suevite deposits at the Ries impact structure have been investigated using analytical scanning electron microscopy. Approximately 320 analyses of glass clasts were obtained. Four glass types are distinguished on the basis of composition and microtextures. Type 1 glasses correspond to the aerodynamically shaped glass bombs studied previously by many workers. Major oxide concentrations indicate the involvement of granitic rocks, amphibolites, and minor Al‐rich gneisses during melting. Type 2 glasses are chemically heterogeneous, even within individual clasts, with variations of several wt% in most of the major oxides (e.g., 57–70 wt% SiO2). This suggests incomplete mixing of: 1) mineral‐derived melts or 2) whole rock melts from a wide range of lithologies. Aluminium‐rich clinopyroxene and Fe‐Mg‐rich plagioclase quench crystals are present in type 1 and 2 glasses, respectively. Type 3 glasses contain substantial amounts of H2O (?12–17 wt%), low SiO2 (50–53 wt%), high Al2O3 (17–21 wt%), and high CaO (5–7 wt%) contents. This suggests an origin due to shock melting of part of the sedimentary cover. Type 4 glasses form a ubiquitous component of the suevites. Based on their high SiO2 content (?85–100 wt%), the only possible protolith are sandstones in the lowermost part of the sedimentary succession. Calcite forms globules within type 1 glasses, with which it develops microtextures indicative of liquid immiscibility. Unequivocal evidence also exists for liquid immiscibility between what are now montmorillonite globules and type 1, 2, and 4 glasses, indicating that montmorillonite was originally an impact melt glass. Clearly, the melt zone at the Ries must have incorporated a substantial fraction of the sedimentary cover, as well as the underlying crystalline basement rocks. Impact melts were derived from different target lithologies and these separate disaggregated melts did not substantially mix in most cases (type 2, 3, and 4 glasses and carbonate melts).  相似文献   

5.
Abstract— The Obolon impact structure, 18 km in diameter, is situated at the northeastern slope of the Ukrainian Shield near its margin with the Dnieper‐Donets Depression. The crater was formed in crystalline rocks of the Precambrian basement that are overlain by marine Carboniferous and continental Lower Triassic deposits. The post‐impact sediments comprise marine Middle Jurassic (Bajocian and Bathonian) and younger Mesozoic and Cenozoic deposits. Today the impact structure is buried beneath an about 300‐meter‐thick sedimentary rock sequence. Most information on the Obolon structure is derived from two boreholes in the western part of the crater. The lowest part of the section in the deepest borehole is composed by allogenic breccia of crystalline basement rocks overlain by clast‐rich impact melt rocks and suevites. Abundant shock metamorphic effects are planar deformation features (PDFs) in quartz and feldspars, kink bands in biotite, etc. Coesite and impact diamonds were found in clast‐rich impact melt rocks. Crater‐fill deposits are a series of sandstones and breccias with blocks of sedimentary rocks that are covered by a layer of crystalline rock breccia. Crystalline rock breccias, conglomeratic breccias, and sandstones with crystalline rock debris have been found in some boreholes around the Obolon impact structure to a distance of about 50 km from its center. Those deposits are always underlain by Lower Triassic continental red clay and overlain by Middle Jurassic marine clay. The K‐Ar age of impact melt glasses is 169 Ma, which corresponds to the Middle Jurassic (Bajocian) age. The composition of crater‐fill rocks within the crater and sediments outside the Obolon structure testify to its formation under submarine conditions.  相似文献   

6.
Abstract— Asteroid and comet impacts on Earth are commonly viewed as agents of ecosystem destruction, be it on local or global scales. However, for some microbial communities, impacts may represent an opportunity for habitat formation as some substrates are rendered more suitable for colonization when processed by impacts. We describe how heavily shocked gneissic crystalline basement rocks exposed at the Haughton impact structure, Devon Island, Nunavut, Arctic Canada, are hosts to endolithic photosynthetic microorganisms in significantly greater abundance than lesser‐shocked or unshocked gneisses. Two factors contribute to this enhancement: (a) increased porosity due to impact fracturing and differential mineral vaporization, and (b) increased translucence due to the selective vaporization of opaque mineral phases. Using biological ultraviolet radiation dosimetry, and by measuring the concentrations of photoprotective compounds, we demonstrate that a covering of 0.8 mm of shocked gneiss can provide substantial protection from ultraviolet radiation, reducing the inactivation of Bacillus subtilis spores by 2 orders of magnitude. The colonisation of the shocked habitat represents a potential mechanism for pioneer microorganisms to invade an impact structure in the earliest stages of post‐impact primary succession. The communities are analogous to the endolithic communities associated with sedimentary rocks in Antarctica, but because they occur in shocked crystalline rocks, they illustrate a mechanism for the creation of microbial habitats on planetary surfaces that do not have exposed sedimentary units. This might have been the case on early Earth. The data have implications for the microhabitats in which biological signatures might be sought on Mars.  相似文献   

7.
Abstract— The Kärdla crater is a 4 km‐wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma‐old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub‐crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. The most intensely shockmetamorphosed allochthonous granitoid crystalline‐derived breccia layers contain planar deformation features (PDFs) in quartz, indicating shock pressures of 20–35 GPa. An apparent K‐enrichment and Ca‐Na‐depletion of feldspar‐ and hornblende‐bearing rocks in the allochthonous breccia units and sub‐crater basement is interpreted to be the result of early stage alteration in an impact‐induced hydrothermal system. The chemical composition of the breccias shows no definite sign of an extraterrestrial contamination. By modeling of the different breccia units with HMX‐mixing, the indigenous component was determined. From the abundances of the siderophile elements (Cr, Co, Ni, Ir, and Au) in the breccia samples, no unambiguous evidence for the incorporation of a meteoritic component above about 0.1 wt% chondrite‐equivalent was found.  相似文献   

8.
Abstract– Shock metamorphism can occur at transient pressures that reach tens of GPa and well over 1000 °C, altering the target material on both megascopic and microscopic scales. This study explores the effects of shock metamorphism on crystalline, quartzofeldspathic basement material from the Haughton impact structure on Devon Island, Arctic Canada. Shock levels were assigned to samples based on petrographic examination of main mineral phases. Conventional shock classification schemes proved to incompletely describe the Haughton samples so a modified shock classification system is presented. Fifty‐two crystalline bedrock samples from the clast‐rich impact melt rocks in the crater, and one reference site outside of the crater, were classified using this system. The shock levels range from 0 to 7 (according to the new shock stage classification proposed here, i.e., stages 0–IV after the Stöffler classification), indicating shock pressures ranging from 0 to approximately 80 GPa. The second aspect of this study involved measuring bulk physical characteristics of the shocked samples. The bulk density, grain density, and porosity were determined using a water displacement method, a bead displacement method, and a Hepycnometer. Results suggest a nonlinear, negative correlation between density and shock level such that densities of crystalline rocks with original densities of approximately 3 g cm?3 are reduced to <1.0 g cm?3 at high shock levels. The results also show a positive nonlinear correlation between porosity and shock level. These data illustrate the effect of shock on the bulk physical characteristics of crystalline rocks, and has implications for assessing the habitability of shocked rocks.  相似文献   

9.
We report paleomagnetic directions from the target rocks of the Tunnunik impact structure, as well as from lithic impact breccia dikes that formed during the impact event. The target sedimentary rocks have been remagnetized after impact‐related tilting during a reverse polarity interval. Their magnetization is unblocked up to 350 °C. The diabase dikes intruding into these sediments retained their original magnetization which unblocks above 400 °C. The impact breccia records a paleomagnetic direction similar to that of the overprints in the target sedimentary rocks. The comparison of the resulting virtual geomagnetic pole for the Tunnunik impact structure with the apparent polar wander path for Laurentia combined with biostratigraphic constraints from the target sedimentary rocks is most consistent with an impact age in the Late Ordovician or Silurian, around 430–450 Ma, soon after the deposition of the youngest impacted sedimentary rocks. Our results from the overprinted sedimentary rocks and diabase dikes imply that the postimpact temperature of the studied rocks was about 350 °C.  相似文献   

10.
Abstract— Clasts of deep-seated crystalline basement rocks in suevites of the Ries crater, Germany, were catalogued lithologically and classified with regard to their degree of shock metamorphism. The sample suite consisted of 806 clasts from 10 outcrops in fallout suevites and 447 clasts from drill cores encountering crater suevite in the crater interior. These clasts can be grouped into seven types of metamorphic and nine types of igneous rocks. One hundred forty-three clasts, representing these lithologies, were analyzed for major element bulk composition. The fallout suevite contains on average 4 vol% of crystalline basement clasts, 0.4 vol% of sedimentary rocks, 16 vol% of glass bodies (some of them aerodynamically shaped), and 79 vol% of groundmass. On average, 52% of all crystalline clasts are from metamorphic sources and 42% are of igneous origin. Using the shock classification of Stöffler (1974), 8% of all crystalline clasts appear unshocked (<10 Gpa), and 34, 30 and 27% of clasts are shocked to stages I (10–35 Gpa), II (35–45 GPa) and III (45–60 GPa), respectively. The bulk composition of suevite glasses is consistent with the modal proportions of crystalline rock types observed in the clast populations. This indicates that the glasses originate by shock-fusion of a similarly composed basement. The crater suevite contains the same crystalline rock types that occur in the fallout suevites. The bore hole “Nördlingen 1973” yields an average of 62 vol% metamorphic and 38 vol% igneous rocks. The crater suevite differs from fallout suevites by a higher clast/glass ratio, by preponderance (65–95%) of clasts shocked to stage I only, and by the absence of aerodynamically shaped glass bodies. The source of crystalline clasts and melt particles of suevites is a volume of rocks, located deep in the crystalline basement, to which the projectile transmittted most of its energy so that only rocks of the basement were shocked by pressures exceeding 10 GPa (deep-burst impact model). Fallout suevites were ejected, propelled by an expanding plume of vaporized rock, and withdrew preferentially from this volume melt and highly shocked clasts, leaving in the transient cavity the crater suevite with more clasts of modest shock levels and less melt.  相似文献   

11.
Abstract— The occurrence of shock metamorphosed quartz is the most common petrographic criterion for the identification of terrestrial impact structures and lithologies. Its utility is due to its almost ubiquitous occurrence in terrestrial rocks, its overall stability and the fact that a variety of shock metamorphic effects, occurring over a range of shock pressures, have been well documented. These shock effects have been generally duplicated in shock recovery experiments and, thus, serve as shock pressure barometers. After reviewing the general character of shock effects in quartz, the differences between experimental and natural shock events and their potential effects on the shock metamorphism of quartz are explored. The short pulse lengths in experiments may account for the difficulty in synthesizing the high-pressure polymorphs, coesite and stishovite, compared to natural occurrences. In addition, post-shock thermal effects are possible in natural events, which can affect shock altered physical properties, such as refractive index, and cause annealing of shock damage and recrystallization. The orientations of planar microstructures, however, are unaffected by post-impact thermal events, except if quartz is recrystallized, and provide the best natural shock barometer in terms of utility and occurrence. The nature of planar microstructures, particularly planar deformation features (PDFs), is discussed in some detail and a scheme of variations in orientations with shock pressure is provided. The effect of post-impact events on PDFs is generally limited to annealing of the original glass lamellae to produce decorated PDFs, resulting from the exsolution of dissolved water during recrystallization. Basal (0001) PDFs differ from other PDF orientations in that they are multiple, mechanical Brazil twins, which are difficult to detect if not partially annealed and decorated. The occurrence and significance of shock metamorphosed quartz and its other phases (namely, coesite, stishovite, diaplectic glass and lechatelierite) are discussed for terrestrial impact structures in both crystalline (non-porous) and sedimentary (porous) targets. The bulk of past studies have dealt with crystalline targets, where variations in recorded shock pressure in quartz have been used to constrain aspects of the cratering process and to estimate crater dimensions at eroded structures. In sedimentary targets, the effect of pore space results in an inhomogeneous distribution in recorded shock pressure and temperature, which requires a different classification scheme for the variation of recorded shock compared to that in crystalline targets. This is discussed, along with examples of variations in the relative abundances of planar microstructures and their orientations, which are attributed to textural variations in sedimentary target rocks. Examples of the shock metamorphism of quartz in distal ejecta, such as at the K/T boundary, and from nuclear explosions are illustrated and are equivalent to that of known impact structures, except with respect to characteristics that are due to long-term, post-shock thermal effects. Finally, the differences between the deformation and phase transformation of quartz by shock and by endogenic, tectonic and volcanic processes are discussed. We confirm previous conclusions that they are completely dissimilar in character, due to the vastly different physical conditions and time scales typical for shock events, compared to tectonic and volcanic events. Well-characterized and documented shock effects in quartz are unequivocal indicators of impact in the natural environment.  相似文献   

12.
Shock metamorphism of the lunar samples is discussed. All types of lunar glasses formed by various-size collision-type impact are found as impact glass, ropy glass and agglutinates. The agglutinates bonded by crystal and glassy materials contain hydrogen and helium from the solar wind components. Lunar shocked minerals of plagioclase and silica show anomalous compositions and densities. There are typical two formation processes on planetary materials formed by shock events; that is (1) shocked quartz formed by silica-rich target rocks (esp. on evolved planets of the Earth and Mars), and (2) shocked silica with minor Al contents formed from plagioclase-rich primordial crusts of the Moon. The both shocked silica grows to coarse-grain normal crystals after high-temperature metamorphism which cannot distinguish the original main formation event of impact process.  相似文献   

13.
Abstract— Impact cratering is an important geological process on the terrestrial planets and rocky and icy moons of the outer solar system. Impact events generate pressures and temperatures that can melt a substantial volume of the target; however, there remains considerable discussion as to the effect of target lithology on the generation of impact melts. Early studies showed that for impacts into crystalline targets, coherent impact melt rocks or “sheets” are formed with these rocks often displaying classic igneous structures (e.g., columnar jointing) and textures. For impact structures containing some amount of sedimentary rocks in the target sequence, a wide range of impact‐generated lithologies have been described, although it has generally been suggested that impact melt is either lacking or is volumetrically minor. This is surprising given theoretical constraints, which show that as much melt should be produced during impacts into sedimentary targets. The question then arises: where has all the melt gone? The goal of this synthesis is to explore the effect of target lithology on the products of impact melting. A comparative study of the similarly sized Haughton, Mistastin, and Ries impact structures, suggests that the fundamental processes of impact melting are basically the same in sedimentary and crystalline targets, regardless of target properties. Furthermore, using advanced microbeam analytical techniques, it is apparent that, for the structures under consideration here, a large proportion of the melt is retained within the crater (as crater‐fill impactites) for impacts into sedimentary‐bearing target rocks. Thus, it is suggested that the basic products are genetically equivalent but they just appear different. That is, it is the textural, chemical and physical properties of the products that vary.  相似文献   

14.
Plagioclase feldspar is one of the most abundant minerals on the surface of the Earth, the Moon, and Mars, and is also commonly found in meteorites. Studying shock effects in feldspar thus provides us with fundamental information about impact cratering processes on planetary bodies. In this study, plagioclase from monomict and polymict breccias, impact melt rocks, and shock‐metamorphosed target rocks, from throughout the Mistastin Lake impact structure, Canada, was examined using 514 nm laser Raman spectroscopy. As one of the very few impact structures with anorthosite in the target rocks, the Mistastin Lake impact structure provides a unique opportunity to study shocked plagioclase displaying progressive shock metamorphic features. A series of microscopic features was observed within plagioclase, including twins, needle‐like inclusions, planar features, and alteration. The lack of planar deformation features is notable. Raman spectra of these features suggest that this technique is capable of differentiating and classifying shock features in low to moderately shocked rocks. Caution should be exercised, however, as Raman spectra collected from unshocked plagioclase references with known compositions indicate that peak width and peak ratio of the Raman peaks in lower wave number region (<350 cm?1) and the main signature peaks around 500 cm?1 vary with chemical composition and crystal orientation. Data collected from diaplectic glass suggest that Raman features are efficient in distinguishing crystalline plagioclase and diaplectic glass. We also observed significant variations in the Raman intensities collected from diaplectic glass, which we ascribe to the localized disorder or inhomogeneity of shock pressure and temperature throughout the target.  相似文献   

15.
Abstract— The central allochthonous polymict breccia of the Haughton impact structure is up to about 90 m thick and as much as 7.3 km in radial extent. It has been analyzed with respect to modal composition, grain-size characteristics, and degree of shock metamorphism for the grain-size ranges 10–~ 50, 1–10, 0.03–1, and <0.03 mm. The mineralogy of the breccia matrix is dominated by dolomite and calcite, with minor amounts of quartz, other silicate minerals, and rare melt particles. The following lithic clasts have been identified in the 1–10 mm size fraction (averages of vol.% given in parentheses): dolomitic rocks (51), limestones (29), crystalline rocks (10), sandstones and siltstones (3.7), chert (0.7), melt particles (1.9). The mineral clasts (1–0.03 mm) comprise (with decreasing frequency) dolomite, quartz, calcite, feldspar, biotite, amphibole, garnet, opaques, rounded quartz derived from sandstones and accessory minerals. Lithic and mineral clasts display various degrees of shock. Fragments of crystalline rocks are shocked in the 0–60 GPa range; whole rock melts from the crystalline basement are lacking and unshocked rocks are very rare. In contrast, shock-melted sandstones, shales, and chert were found in most samples. Large clasts of these melt rocks are highly concentrated near the center of the crater. Otherwise, no distinct change of the modal composition with radial range has been observed except that the frequency of limestone clasts increases slightly with radial range. The breccia near the center is more fine-grained than that beyond about 1 km radius and the sorting parameter increases somewhat with radial range. Except for the high concentration of shock-melted sedimentary rocks and highly shocked crystalline rocks near the center of the crater, the distribution of shock stages within the lithic clast population is quite uniform throughout the breccia formation. We conclude that the breccia constituents are derived from the lower part of the target stratigraphy (deeper than about 800 m) and that the total depth of excavation at Haughton is in the order of 2000 m. The mixing of sedimentary rocks of the Eleanor River Formation, Lower Ordovician, and Cambrian (~850 m thickness) with crystalline basement rocks is quite thorough and homogeneous throughout the breccia lens, at least for the analyzed part. This may require an air-borne mode of emplacement for the upper section of the breccia in analogy to the fall-back suevite in the Ries crater. A calculation of the excavation (Z-model) and of the shock pressure attenuation based on reasonable estimates of the energy and crater geometry of the Haughton impact confirms the observed maximum depth of excavation of about 2 km. Shock-melted crystalline basement rocks, if present at all, must be confined to the very center of the structure below the excavation cavity.  相似文献   

16.
The 3.6 Ma El'gygytgyn structure, located in northeastern Russia on the Chukotka Peninsula, is an 18 km diameter complex impact structure. The bedrock is formed by mostly high‐silica volcanic rocks of the ~87 Ma old Okhotsk‐Chukotka Volcanic Belt (OCVB). Volcanic target rocks and impact glasses collected on the surface, as well as drill core samples of bedrock and impact breccias have been investigated by thermal ionization mass spectrometry (TIMS) to obtain new insights into the relationships between these lithologies in terms of Nd and Sr isotope systematics. Major and trace element data for impact glasses are added to compare with the composition of target rocks and drill core samples. Sr isotope data are useful tracers of alteration processes and Nd isotopes reveal characteristics of the magmatic sources of the target rocks, impact breccias, and impact glasses. There are three types of target rocks mapped on the surface: mafic volcanics, dacitic tuff and lava of the Koekvun’ Formation, and dacitic to rhyolitic ignimbrite of the Pykarvaam Formation. The latter represents the main contributor to the impact rocks. The drill core is divided into a suevite and a bedrock section by the Sr isotope data, for which different postimpact alteration regimes have been detected. Impact glasses from the present‐day surface did not suffer postimpact hydrothermal alteration and their data indicate a coherent alteration trend in terms of Sr isotopes with the target rocks from the surface. Surprisingly, the target rocks do not show isotopic coherence with the Central Chukotka segment of the OCVB or with the Berlozhya magmatic assemblage (BMA), a late Jurassic felsic volcanic suite that crops out in the eastern part of the central Chukotka segment of the OCVB. However, concordance for these rocks exists with the Okhotsk segment of the OCVB. This finding argues for variable source magmas having contributed to the build‐up of the OCVB.  相似文献   

17.
Abstract— Impact cratering is an important geological process on Mars and the nature of Martian impact craters may provide important information as to the volatile content of the Martian crust. Terrestrial impact structures currently provide the only ground‐truth data as to the role of volatiles and an atmosphere on the impact‐cratering process. Recent advancements, based on studies of several well‐preserved terrestrial craters, have been made regarding the role and effect of volatiles on the impact‐cratering process. Combined field and laboratory studies reveal that impact melting is much more common in volatile‐rich targets than previously thought, so impact‐melt rocks, melt‐bearing breccias, and glasses should be common on Mars. Consideration of the terrestrial impact‐cratering record suggests that it is the presence or absence of subsurface volatiles and not the presence of an atmosphere that largely controls ejecta emplacement on Mars. Furthermore, recent studies at the Haughton and Ries impact structures reveal that there are two discrete episodes of ejecta deposition during the formation of complex impact craters that provide a mechanism for generating multiple layers of ejecta. It is apparent that the relative abundance of volatiles in the near‐surface region outside a transient cavity and in the target rocks within the transient cavity play a key role in controlling the amount of fluidization of Martian ejecta deposits. This study shows the value of using terrestrial analogues, in addition to observational data from robotic orbiters and landers, laboratory experiments, and numerical modeling to explore the Martian impact‐cratering record.  相似文献   

18.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   

19.
Abstract— The 4 km wide and 500 m deep circular Kärdla impact structure in Hiiumaa Island, Estonia, of middle Ordovician age (~455 Ma), is buried under Upper Ordovician and Quaternary sediments. To constrain the geophysical models of the structure, petrophysical properties such as magnetic susceptibility, natural remanent magnetization (NRM), density, electrical conductivity, porosity and P-wave velocity were measured on samples of crystalline and sedimentary rocks collected from drill cores in different parts of the structure and the surrounding area. The results were used to interpret the central gravity anomaly of ?3 mGal and the magnetic anomaly of ?100 nT and also the surrounding weak positive anomalies revealed by high precision survey data. The unshocked granitic rocks outside the structure have a mean density of ~2630 kgm?3. Their shocked counterparts have densities of ~2400 kgm?3 at a depth of ~500 m, increasing up to 2550 kgm?3 at a depth of 850 m. Porosity and electrical conductivity decrease, but P-wave velocity increases as density increases away from the impact point. Thus, the gradual changes in the physical properties of the rocks as a function of radial distance from the crater centre are consistent with an impact origin for Kärdla. As in many other impact structures, the magnetization of the shocked rocks are also clearly lower than those of unshocked target rocks. A new geophysical and geological model of the Kärdla structure is presented based on geophysical field measurements and data on gradual changes in petrophysical parameters of the shocked target and overlying rocks, together with structural data from numerous boreholes. An important feature of this model is the lack of an observable geophysical signature of the central uplift observed in drillcores.  相似文献   

20.
Abstract— We have analyzed fluorine and boron in nine tektites from all four strewn fields, and in a suite of impact glasses and target rocks from the Zhamanshin and Darwin impact craters, as well as Libyan Desert Glass and Aouelloul impact glass samples. Fluorine and boron are useful indicators for the volatilization and temperature history of tektites and impact glasses. Tektites from different strewn fields show a limited range of F and B contents and have F/B ratios near unity. Most splash-form tektites have lower average F and B contents than Muong Nong type tektites, which is similar to the relation between irghizites and zhamanshinites. The F and B contents in target rocks from the Zhamanshin and Darwin impact craters are similar to normal terrestrial sediments. Fluorine in impact glasses and tektites is more depleted compared to their (known or inferred) target rocks than is boron, which is caused by the higher volatility of F. The F/B ratios therefore decrease with increasing temperature of formation (suggesting that irghizites were formed at a higher temperature than zhamanshinites, and Muong Nong type tektites at a lower temperature than splash-form tektites). Mixing of local country rocks together with partial loss of the volatiles F and B can reproduce the F and B contents of impact glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号