首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Compositions of basaltic and ultramafic rocks analyzed by Mars rovers and occurring as Martian meteorites allow predictions of metamorphic mineral assemblages that would form under various thermophysical conditions. Key minerals identified by remote sensing roughly constrain temperatures and pressures in the Martian crust. We use a traditional metamorphic approach (phase diagrams) to assess low‐grade/hydrothermal equilibrium assemblages. Basaltic rocks should produce chlorite + actinolite + albite + silica, accompanied by laumontite, pumpellyite, prehnite, or serpentine/talc. Only prehnite‐bearing assemblages have been spectrally identified on Mars, although laumontite and pumpellyite have spectra similar to other uncharacterized zeolites and phyllosilicates. Ultramafic rocks are predicted to produce serpentine, talc, and magnesite, all of which have been detected spectrally on Mars. Mineral assemblages in both basaltic and ultramafic rocks constrain fluid compositions to be H2O‐rich and CO2‐poor. We confirm the hypothesis that low‐grade/hydrothermal metamorphism affected the Noachian crust on Mars, which has been excavated in large craters. We estimate the geothermal gradient (>20 °C km?1) required to produce the observed assemblages. This gradient is higher than that estimated from radiogenic heat‐producing elements in the crust, suggesting extra heating by regional hydrothermal activity.  相似文献   

2.
A review of the dust storms observed on Mars is made. This includes the seasonal and interannual variability of planet- encircling and regional dust storms. Although there is a significant interannual variability, planet-encircling dust storms have been observed to form during the southern spring and summer seasons, while regional dust storms tend to occur more frequently. Some aspects of possible mechanisms associated with the origin, maintenance and decay of the dust storms are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
A model is outlined shortly that explains the Martian surface asymmetry on the basis of interior processes.  相似文献   

4.
A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history and that its present tenous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion. This atmosphere probably persisted—despite the direct and indirect effects of hydrogen escape—for a geologically short time interval during, and immediately following, Martian accretion. That was the only portion of Martian history when the atmospheric environment could have been chemically suited for organic synthesis in the gas phase. Subsequent gradual degrassing of the Martian interior throughout Martian history could not sustain a reducing atmosphere due to the low intensity of planet-wide orogenic activity and the short atmospheric mean residence time of hydrogen on Mars. During the post-accretion history of Mars, the combined effects of planetary hydrogen escape, solar-wind sweeping, and reincorporation of volatiles into the Martian surface produced and maintained the present atmosphere.  相似文献   

5.
Abstract— In the framework of international planetary exploration programs, several space missions are planned to search for organics and bio‐signatures on Mars. Previous attempts have not detected any organic compounds in the Martian regolith. It is therefore critical to investigate the processes that may affect organic molecules on and below the planet's surface. Laboratory simulations can provide useful data about the reaction pathways of organic material at Mars' surface. We have studied the stability of amino acid thin films against ultraviolet (UV) irradiation and use those data to predict the survival time of these compounds on and in the Martian regolith. We show that thin films of glycine and D‐alanine are expected to have half‐lives of 22 ± 5 hr and of 3 ± 1 hr, respectively, when irradiated with Mars‐like UV flux levels. Modelling shows that the half‐lives of the amino acids are extended to the order of 107 years when embedded in regolith. These data suggest that subsurface sampling must be a key component of future missions to Mars dedicated to organic detection.  相似文献   

6.
Surface materials exposed throughout the equatorial region of Mars have been classified and mapped on the basis of spectral reflectance properties determined by the Viking II Orbiter vidicon cameras. Frames acquired at each of three wavelengths (0.45 ± 0.03 μm, 0.53 ± 0.05 μm, and 0.59 ± 0.05 μm) during the approach of Viking Orbiter II in Martian summer (Ls = 105°) were mosaicked by computer. The mosaics cover latitudes 30°N to 63°S for 360° of longitude and have resolutions between 10 and 20 km per line pair. Image processing included Mercator transformation and removal of an average Martian photometric function to produce albedo maps at three wavelengths. The classical dark region between the equator and ~30°S in the Martian highlands is composed of two units: (i) and ancient unit consisting of topographic highs (ridges, crater rims, and rugged plateaus riddled with small dendritic channels) which is among the reddest on the planet (0.59/0.45 μm ? 3); and (ii) intermediate age, smooth, intercrater volcanic plains displaying numerous mare ridges which are among the least red on Mars (0.59/0.45 μm ? 2). The relatively young shield volcanoes are, like the oldest unit, dark and very red. Two probable eolian deposits are recognized in the intermediate and high albedo regions. The stratigraphically lower unit is intermediate in both color (0.59/ 0.45 μm ? 2.5) and albedo. The upper unit has the highest albedo, is very red (0.59/0.45 μm ? 3), and is apparently the major constituent of the annual dust storms as its areal extent changes from year to year. The south polar ice cap and condensate clouds dominate the southernmost part of the mosaics.  相似文献   

7.
Population-density maps of craters in three size ranges (0.6 to 1.2 km, 4 to 10 km, and >20 km in diameter) were compiled for most of Mars from Mariner 9 imagery. These data provide: historical records of the eolian processes (0.6 to 1.2 km craters); stratigraphic, relative, and absolute timescales (4 to 10 km craters); and a history of the early postaccretional evolution of the uplands (> 20 km craters).Based on the distribution of large craters (>20 km diameters), Mars is divisible into two general classes of terrain, densely cratered and very lightly cratered—a division remarkably like the uplands-maria dichotomy of the moon. It is probable that this bimodal character in the density distribution of large craters arose from an abrupt transition in the impact flux rate from an early intense period associated with the tailing off of accretion to an extended quiescent epoch, not from a void in geological activity during much of Mars' history. Radio-isotope studies of Apollo lunar samples show that this transition occurred on the moon in a short time.The intermediate-sized craters (4 to 10 km diameter) and the small-sized craters (0.6 to 1.2 km diameter) appear to be genetically related. The smaller ones are apparently secondary impact craters generated by the former. Most of the craters in the larger of these two size classes appear fresh and uneroded, although many are partly buried by dust mantles. Poleward of the 40° parallels the small fresh craters are notably absent owing to these mantles. The density of small craters is highest in an irregular band centered at 20°S. This band coincides closely with (1) the zone of permanent low-albedo markings; (2) the “wind equator” (the latitude of zero net north or south transport at the surface); and (3) a band that includes a majority of the small dendritic channels. Situated in the southermost part of the equatorial unmantled terrain which extends from about 40°N to 40°S, this band is apparently devoid of even a thin mantle. Because this belt is also coincident with the latitutde of maximum solar insolation (periapsis occurs near summer solstice), we suggest that this band arises from the asymmetrical global wind patterns at the surface and that the band probably follows the latitude of maximum heating which migrates north and south from 25°N to 25°S within the unmantled terrain on a 50,000 year timescale.The population of intermediate-sized craters (4–10 km diameter) appears unaffected by the eolian mantles, at least within the ±45° latitudes. Hence the local density of these craters is probably a valid indicator of the relative age of surfaces generated during the period since the uplands were intensely bombarded and eroded. It now appears that the impact fluxes at Mars and the moon have been roughly the same over the last 4 b.y. because the oldest postaccretional, mare-like surfaces on Mars and the moon display about the same crater density. If so, the nearness of Mars to the asteroid belt has not generated a flux 10 to 25 times greater than the lunar flux. Whereas the lunar maria show a variation of about a factor of three in crater density from the oldest to the youngest major units, analogous surfaces on Mars show a variation between 30 and 50. This implies that periods of active eolian erosion, tectonic evolution, volcanic eruption, and possibly fluvial modification have been scattered throughout Martian history since the formation and degradation of the martian uplands and not confined to small, ancient or recent, epochs. These processes are surely active on the planet today.  相似文献   

8.
Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9 images suggest interaction of impact, volcanic, and gravitational processes with the ice-laden layer. Finally, volcanic eruptions into ice produces a highly oxidized friable amorphous rock, palagonite. Based on spectral reflectance properties, these materials may provide the best analog to Martian surface materials. They are easily eroded, providing vast amounts of eolian debris, and have been suggested (Toulmin et al., 1977) as possible source rocks for the materials observed at the Viking landing sites.  相似文献   

9.
Thomas E. Thorpe 《Icarus》1982,49(3):398-415
Opposition measurements made by the Viking Orbiter television cameras in the Arabia, Syrtis Major, and Elysium Planitia regions have been combined with observations previously reported to provide a photometric comparison of these areas and several generic features. Radiative transfer expressions were used to derive average surface particle single-scattering albedos, phase functions, and porosities. Best functional fit to the data includes consideration of atmospheric scattering, two-particle populations, and surface roughness. Several findings include the ubiquitous presence of high-albedo, high-porosity surface particles; the absence of an opposition surge in the Syrtis Major region; and the largest surface roughness in the Chryse areas.  相似文献   

10.
Taking advantage of the favorable opposition of 1971, the Goldstone radar system, operating at 2388MHz, was used to scan the Martian surface. Measurements of altitude and reflected power were taken approximately every 3 days. Each measurement represents an area 8km E-W × 80km N-S, the highest resolution attained to date. Altitude measurements obtained on different observing days were combined to produce altitude profiles for three complete rotations, each at different latitudes. Large-scale variations in altitudes cover a range of 14km. Altitude changes of 5 in 30km of longitude were observed. The altitude profiles show the heavy cratering of the surface, and several large craters (50–100km) 1–2 km deep are easily seen. Reflected power for different angles of incidence was measured, yielding the scattering properties of the surface as a function of longitude. Correlation was found between the peak intensity of the reflected signal and the width of the scattering function. The average relationship between the intensity and the width suggests a power reflection coefficient of at least 0.064 ± 0.012. Departures from the average are interpreted as deviations in the reflection coefficient from the mean value. These variations are presented as a function of longitude for each of the three rotations.  相似文献   

11.
David Pieri 《Icarus》1976,27(1):25-50
The distribution of small channels on Mars has been mapped from Mariner 9 images, at the 1:5 000 000 scale, by the author. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (~1 km) to about 10 km. The greatest density of small band occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (~100 m) imply a major episode of small-channel formation early in Martian geologic history.  相似文献   

12.
The Goldstone radar system was used at a wavelength of 12.6 cm to probe the Martian surface during the 1973 opposition. Measurements of range and reflected power were made at least weekly between July 12 and November 24. Surface cells isolated by the radar system were 8 km E-W × 110 km N-S. Altitudes were calculated from signal time delays measured relative to a triaxial ellipsoid and were combined with altitudes measured during the 1971 opposition. Contours of constant altitude were calculated at 200 m intervals between latitudes ?14° and ?22°. These contours are presented in conjunction with Mars charts derived from Mariner 9 television pictures. Reflected power was measured at angles of incidence between ?5° and +5°. These measurements were combined with those obtained during the 1971 opposition. Predictions of the reflected power versus the angle of incidence were calculated from the exponential surface model of Hagfors. The predictions were fit to the data in a least-squares sense, using a nonlinear iterative procedure, to yield estimates of surface roughness and reflectivity. The smoother regions exhibit a typical reflectivity of 8.2%. A tendency for the reflectivity to decrease with increasing roughness was observed.  相似文献   

13.
Here, we calculate the mineralogy of the Martian lower crust and upper mantle as a function of pressure and temperature with depth using four bulk compositions (average crust, Gusev basalt, olivine‐phyric shergottite, and primitive average mantle). We then use this mineralogy to extract rock properties such as density and seismic velocities, describe their changes with varying conditions and geotherms, and make predictions for the crust–mantle boundary. Mineralogically, all compositions produce garnet, orthopyroxene, clinopyroxene in varying proportions at high pressures, with differences in minor minerals (spinel, ilmenite, rutile, and/or K‐feldspar). According to our calculations, the average crust and Gusev basalt compositions have the potential to yield higher densities than the average mantle composition, particularly for thicker crusts and/or colder geotherms. Therefore, recycling of the Martian crust into the mantle could occur through the process of crustal delamination, if not kinetically inhibited. However, our results show that, depending on crustal thickness, the crust may not be easily distinguishable from the mantle in seismic properties.  相似文献   

14.
Earth-based UBV photometry, high-quality photographs from the Lowell Observatory collection, and Mariner 9 data have been combined with a new radiative transfer theory to derive physical parameters for the Martian surface and atmosphere, both before and during the 1971 dust storm. We find that the dust particles of the storm had a single-scattering albedo of 0.84 ± 0.02 and an asymmetry factor of 0.35 ± 0.10 in green (V) light. The geometric albedo of Mars was 0.15 and the phase integral 1.83, which yield 0.27 for the Bond albedo. The mean optical thickness of the “clear” atmosphere averaged over the whole planet was 0.15 ± 0.05 and was not detectably dependent on wavelength. Geometric albedos for the surface are 0.25 (light areas) and 0.17 (dark areas) in V, 0.095 in B (both areas), and 0.060 in U (both areas). The soil particles are moderately backward scattering with an asymmetry factor of ?0.20, indicating them to be rather opaque. The mean surface roughness, on a scale larger than that of individual dust particles and therefore large compared with the wavelength, is 0.57. This represents the depth/radius ratio of an average hole and it is only one-half as large as values typical for the Moon and asteroids.  相似文献   

15.
The rheology of the Martian mantle and the planet's initial temperature is constrained with thermal evolution models that include crust growth and test the conditions for magnetic field generation in the core. As observations we use the present-day average crustal thickness of 50-120 km as estimated from the Mars Global Surveyor gravity and topography data, the evidence for the crust being produced mostly early, with a rate declining from the Noachian to the Hesperian, and the evidence for an early magnetic field that likely existed for less than a billion years. We use the fact that the rate of crust growth is a function of temperature, which must be above the solidus in the sub-lithosphere mantle, and the mantle convection speed because the latter determines the rate at which melt can be replenished. The convection speed is a strong function of viscosity which, in turn, is a strong function of temperature and also of the water content of the mantle. We use a viscosity parameterization with a reference viscosity evaluated at 1600 K the value of which can be characteristic of either a dry or a wet mantle. We further consider the Fe-FeS phase diagram for the core and compare the core liquidus estimated for a sulphur content of 14% as suggested by the SNC meteorite compositions with the core temperatures calculated for our cooling models. Two data sets of the Fe-FeS eutectic temperature have been used that differ by about 200 K [Böhler, R., 1996. Fe-FeS eutectic temperatures at 620 kbar. Phys. Earth Planet. Inter. 96, 181-186; Fei, Y., Bertka, C.M., Finger, L.W., 1997. High-pressure iron-sulphur compound, Fe3S2, and melting relations in the Fe-FeS system. Science 275, 1621-1623] at Martian core-mantle boundary pressure and in the eutectic composition by 5 wt%. The differences in eutectic temperature and composition translate into a difference of about 400 K in liquidus temperature for 14 wt% sulphur.We find it premature to rule out specific mantle rheologies on the basis of the presently available crustal thickness and crust growth evidence. Rather a trade-off exists between the initial mantle temperature and the reference viscosity. Both a wet mantle rheology with a reference viscosity less than 1020 Pas and a dry mantle rheology with a reference viscosity of 1021 Pas or more can be acceptable if initial mantle temperatures between roughly 1700 and 2000 K are allowed. To explain the magnetic field history, the differences in liquidus temperatures matter. For a liquidus temperature of about 1900 K at the Martian core-mantle boundary as calculated from the Böhler et al. eutectic, a dry mantle rheology can best explain the lack of a present-day dynamo. For a liquidus temperature of about 1500 K at the core-mantle boundary as calculated from the Fei et al. eutectic all models are consistent with the observed lack of dynamo action. The reason lies with the fact that at 14 wt% S the Martian core would be close to the eutectic composition if the Fei et al. data are correct. As inner core growth is unlikely for an almost eutectic core, the early field would have been generated by a thermally driven dynamo. Together with the measured strength of the Martian crustal magnetization this would prove the feasibility of a strong thermally driven dynamo.  相似文献   

16.
A similitude parameter is derived which is based on theoretical considerations of erosion due to sand in saltation. This parameter has been used to correlate wind tunnel experiments of particle flow over model craters. The characteristics of the flow field in the vicinity and downstream of a crater are discussed and it is shown that erosion is initiated in areas lying under a pair of trailing vortices. The erosion rate parameter is used to calculate erosion rates on Mars, reported in Part 2, to be published later.  相似文献   

17.
The Goldstone radar system was operated at wavelengths of 3.5 and 12.6 cm to probe the Martian surface during the 1975 opposition. Regions studied in detail by range-Doppler techniques are Syrtis Major, Sinus Meridiani, and the crater Schiaparelli. Average rms slopes of 1.6° and 1.1° were measured in Syrtis Major at 3.5 and 12.6 cm, respectively, while the average reflectivity was 0.064 ± 0.02 at both wavelengths. No wavelength dependence of surface roughness was seen in Sinus Meridiani, where rms surface slopes averaged 1.8° and the reflectivity was 0.08 ± 0.02. The regions around Schiaparelli were probed at a 12.6-cm wavelength. The echo from the bottom of the crater was undetectable. Hence ρ0C < 25, where ρ0 is the reflectivity and C is the Hagfors roughness parameter. Operating at 3.5 cm during May and June of 1976, 149 continous-wave echo spectra were obtained near latitude 18°, sampling most longitudes including the early Viking landing sites A1 and A2. The average total radar cross section is 4.8% of the geometrical cross section. The diffuse component was estimated to be 1.9%, leaving 2.9% to the average quasi-specular component. The average rms slope is 4.1°. Six spectra obtained at site A1 indicate that rms slopes are 5 to 9° between latitudes 17 and 19°. Three spectra obtained at s site A2 indicate an rms slope of 3.9°.  相似文献   

18.
19.
Mars Express spacecraft inserted successfully Martian orbit at the end of 2003. On board this probe, a radar instrument called MARSIS (for Mars Advanced Radar for Surface and Ionosphere Sounding) is looking for water inside the first kilometers of Martian crust. To support MARSIS planning and data inversion, Laboratoire de Planétologie de Grenoble developed a MARSIS signal simulator.We show in this paper that MARSIS can also characterize some surface features, in addition to subsurface water and ionosphere sounding. We study a Martian surface region of special interest: Nilokeras Mensae, inside Acidalia Planitia. We discuss the previous geological studies of this region, and show the geomorphologies analyze of this surface area could lead to a simple terrain model. Then, we present a possible data inversion scheme and applying the MARSIS simulator, we test a first radar data inversion.Finally, we will show that complete dielectric characteristics of surface top layers can be retrieved, at least as often Mars Express flies over some layered terrain (at wavelength scale).  相似文献   

20.
Abstract— Isotopic and trace element compositions of Martian meteorites show that early differentiation of Mars produced complementary crustal and mantle reservoirs that were sampled by later magmatic events. This paper describes a mass balance model that estimates the rare earth element (REE) content and thickness of the crust of Mars from the compositions of shergottites. The diverse REE and Nd isotopic compositions of shergottites are most easily explained by variable addition of light rare earth element (LREE)–enriched crust to basaltic magmas derived from LREE-depleted mantle source regions. Antarctic shergottites EET 79001, ALH 77005, LEW 88516, and QUE 94201 all have strongly LREE-depleted patterns and positive initial 143Nd isotopic compositions, which is consistent with the generation of these magmas from depleted mantle sources and little or no interaction with enriched crust. In contrast, Shergotty and Zagami have negative initial 143Nd isotopic compositions and less pronounced depletions of the LREE, which have been explained by incorporation of enriched crustal components into mantle-derived magmas (Jones, 1989; Longhi, 1991; Borg et al., 1997). The mass balance model presented here derives the REE composition of the crustal component in Shergotty by assuming it represents a mixture between a mantle-derived magma similar in composition to EET 79001A and a LREE-enriched crustal component. The amount of crust in Shergotty is constrained by mixing relations based on Nd-isotopic compositions, which allows the REE pattern of the crustal component to be calculated by mass balance. The effectiveness of this model is demonstrated by the successful recovery of important characteristics of the Earth's continental crust from terrestrial Columbia River basalts. Self-consistent results for Nd-isotopic compositions and REE abundances are obtained if Shergotty contains ~10–30% of LREE-enriched crust with >10 ppm Nd. This crustal component would have moderately enriched LREE (Sm/Nd = 0.25–0.27; 147Sm/144Nd = 0.15–0.17; La/Yb = 2.7–3.8), relatively unfractionated heavy rare earth elements (HREE), and no Eu anomaly. Crust with these characteristics can be produced from a primitive lherzolitic Martian mantle by modest amounts (2–8%) of partial melting, and it would have a globally averaged thickness of <45 km, which is consistent with geophysical estimates. Mars may serve as a laboratory to investigate planetary differentiation by extraction of a primary basaltic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号