首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atmospheric transmission window at 2.7 μm in Jupiter's atmosphere was observed at a spectral resolution of 0.1 cm?1 from the Kuiper Airborne Observatory. From analysis of the CH4 abundance (~80m-am) and the H2O abundance (<0.0125cm-am) it was determined that the penetration depth of solar flux at 2.7 μm is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 μm and other recent results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. The search for H2S in Jupiter's atmosphere yielded an upper limit of ~0.1cm-am. The corresponding limit to the elemental abundance ratio [S]/[H] was ~1.7 × 10?8, about 10?3 times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.  相似文献   

2.
Kaare Aksnes 《Icarus》1974,21(1):100-111
Two series of predictions have been published for the 1973–1974 mutual phenomena of Jupiter's satellites, one (June–October, 1973) by Milbourn and Carey, and the other (February 1973–May 1974) by Brinkmann and Millis. The main purpose of this paper is to investigate some significant discrepancies between these two sets of predictions. New predictions are calculated for the period June 1973–May 1974. They agree very nearly with the predictions by Milbourn and Carey, but frequently differ by several minutes (up to 30 min when Jupiter III and IV are involved) from those by Brinkmann and Millis. Unlike the previous predictions, the new ones also give the estimated light decreases during the phenomena. The method of prediction is documented for future applications to Jupiter's and Saturn's satellites. The paper concludes with a brief discussion of the problems involved in extracting information about the positions, radii, and albedos of the satellites from observed light curves.  相似文献   

3.
The hydrogen bulge is a feature in Jupiter's upper atmosphere that co-rotates with the planetary magnetic field (i.e. the hydrogen bulge is fixed in System III coordinates). It is located approximately 180° removed in System III longitude from the active sector, which has been identified as the source region for Jovian decametric radio emission and for release of energetic electrons into interplanetary space. According to the magnetic-anomaly model, the active sector is produced by the effect of the large magnetic anomaly in Jupiter's northern hemisphere. On the basis of the magnetic-anomaly model, it has been theoretically expected for some time that a two-cell magnetospheric convection pattern exists within the Jovian magnetosphere. Because the convection pattern is established by magnetic-anomaly effects of the active sector, the pattern co-rotates with Jupiter. (This is in contrast to the Earth's two-cell convection pattern that is fixed relative to the Sun with the Earth rotating beneath it.) The sense of the convection is to bring hot magnetospheric plasma into the upper atmosphere in the longitude region of the hydrogen bulge. This hot plasma contains electrons with energies of the order of 100keV that dissociate atmospheric molecules to produce the atomic hydrogen that creates the observed longitudinal asymmetry in hydrogen Lyman alpha emission. We regard the existence of the hydrogen bulge as the best evidence available thus far for the reality of the expected co-rotating magnetospheric convection pattern.  相似文献   

4.
William M. Sinton 《Icarus》1973,20(3):284-296
An atmosphere containing 0.5 cm atm of ammonia is assumed on Io. Such an atmosphere will be frozen at the unilluminated pole during the solstices, but will evaporate at the equinoctial seasons. The ammonia atmosphere will explain: (1) the posteclipse brightenings and their observed times of occurrence and nonocurrence; (2) the observed departure from a two-layer model beating curve upon emergence from eclipse; (3) the discordant temperatures obtained at 10 and 20 μm; and (4) discordant temperatures obtained at 10 and 20 μm during the total phase of an eclipse by Jupiter.In order to explain items 3 and 4 above, a proton flux in Jupiter's magnetosphere of 1.1 × 109 cm?2s? at an energy of 0.5MeV at io's distance from Jupiter is assumed. This flux is 40 times the flux in Divine's (1972) “upper-limit” model of the Jovian radiation belts, while the proton energy is eight times less. The proton flux, plus the solar ultraviolet and infrared flux absorbed by the ammonia, will heat the atmosphere to 245 ± 10°K. At this temperature the occultation atmospheric upper limit allows the addition of 4 cmatm of nitrogen.  相似文献   

5.
The fluctuations in longitude of Jupiter's Red Spot are discussed. The long term fluctuations show behaviour similar to the fluctuations of zonal circulations on the Earth from 1830–1950. The three-monthly fluctuations have a temporal connection with the inferior conjunction of Mercury 1963–1971. Solar activity may be the key to both phenomena.  相似文献   

6.
High-altitude spectra of Jupiter obtained from the Kuiper Airborne Observatory are analyzed for the presence of germane (GeH4) in Jupiter's atmosphere. Comparison with laboratory spectra shows that the strong Q branch of the ν3 band of germane at 2111 cm?1 is prominent in the Jovian spectra. The abundance of germane in Jupiter's atmosphere is 0.006 (±0.003) cm-am corresponding to a mixing ratio of 0.6 ppb. This trace amount of germane is consistent with chemical equilibrium calculations if the germane present at ~1000°K is carried up by convection to the spectroscopically observable region at ~300°K.  相似文献   

7.
Jay L. Inge 《Icarus》1973,20(1):1-6
Approximately 1300 measurements of the positions of 101 features in Jupiter's atmosphere have been made using blue-light photographs of the planet obtained by the International Planetary Patrol from 1970 to 1972. The longitudinal positions of features were read directly with orthographic grids superimposed on optically projected images of Jupiter. For each feature, least-squares linear fits were made on plots of the longitude measurements as a function of time, in order to derive drifts rates relative to System I or II. Drift rates were used to compute rotation periods; and, by combining the data from various latitudes, short-term rotation profiles were constructed. These short-term profiles are compared with a “mean” multiple-year profile, and differences in detail are evident. Slightly shorter rotation periods were found near the edges of the equatorial jet than at its center in 1970 and 1971. In 1972, one feature at +37° north was found to exhibit an abrupt change in period amounting to an increase of 95.1 seconds.  相似文献   

8.
William K. Hartmann 《Icarus》1980,44(2):441-453
Observational and theoretical data converge on the conclusion that planetesimals in Jupiter's region of the solar nebula were initially composed predominantly of a mixture of roughly 39–70% H2O ice by volume, and 30–61% dark stony material resembling carbonaceous chondrites. Recent observations emphasize a division of most asteroid and satellite surfaces in this region into two distinct groups: bright icy material and dark stony material. The present model accounts for these by two main processes: an impact-induced buildup of a dark stony regolith in the absence of surface thermal disturbance, and thermal-disturbance-induced eruption of “water magmas” that create icy surfaces. “Thermal disturbances” include tidal and radiative effects caused by nearness of a planet. A correlation of crater density and albedo, Ganymede's dark-ray craters, and other observed phenomena (listed in the summary) appear consistent with the model discussed here.  相似文献   

9.
J.L. Elliot  J. Veverka 《Icarus》1976,27(3):359-386
The characteristics of spikes observed in the occultation light curves of β Scorpii by Jupiter are reviewed and discussed. Using a model in which the refractivity (density) gradients in the Jovian atmosphere are parallel to the local gravitational field, the spikes are shown to yield information about (i) the [He]/-[H2] ratio in the atmosphere, (ii) the fine scale density structure of the atmosphere and (iii) high-resolution images of the occulted stars. The spikes also serve as indicators for ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients; these appear to be absent on scales of a few kilometers at altitudes corresponding to number densities less than 2 × 1014 cm?3. Spikes are produced by atmospheric density variations, perhaps due to atmospheric layers, density waves or turbulence. To discriminate among these possibilities, future occultation observations should be made from a number of observation sites at two or more wavelengths simultaneously with high time resolution techniques. Given a large telescope and suitable observing techniques, useful information about Jupiter's atmosphere can be obtained from future occultations of early-type stars as faint as V ~ + 6–7.  相似文献   

10.
Measurements of the 1.4 GHz emission from Jupiter made when DE was 3°·1 show the circular polarization to vary from +0.8 to ?1.1% as the planet rotates. The rms scatter of the points about the mean curve is only 0.09%. Expressed as a function of Jovian magnetic latitude the polarization at first increases linearly but beyond latitudes ~7° the curve flattens. This shape requires that the radiating electrons have a pitch angle distribution similar to that inferred earlier from the beaming and linear polarization. The magnitude of the circular polarization requires an equatorial magnetic flux density in the belt of about 0.3G, consistent with the Pioneer results.Compared with measurements made one orbital period earlier, the total flux density has decreased by 15%, but the beaming has not changed appreciably.  相似文献   

11.
We have resolved the relative rings-to-disk brightness (specific intensity) of Saturn at 39 μm (δλ ? 8 μm) using the 224-cm telecscope at Mauna Kea Oservatory, and have also measured the total flux of Saturn relative to Jupiter in the same bandpass from the NASA Learjet Observatory. These two measurements, which were made in early 1975 with Saturn's rings near maximum inclination (b′ ? 25°), determine the disk and average ring (A and B) brightness in terms of an absolute flux calibration of Jupiter in the same bandpass. While present uncertainties in Jupiter's absolute calibration make it possible to compare existing measurementsunambiguously, it is nevertheless possible to conclude the following: (1) observations between 20 and 40 μm are all compatible (within 2σ) of a disk brightness temperature of 94°K, and do not agree with the radiative equilibrium models of Trafton; (2) the rings at large tilt contribute a flux component comparable to that of the planet itself for λ ? 40 μm and (3) there is a decrease of ~22% in the relative ring: disk brightness between effective wavelengths of 33.5 and 39 μm.  相似文献   

12.
J. May  T.D. Carr  M.D. Desch 《Icarus》1979,40(1):87-93
A total of 26 measurements of Jupiter's 12-year average rotation period were made at frequencies of 18, 20, and 22.2 MHz at observatories in Florida and Chile. An improved method was employed in which histograms of occurrence probability vs central meridian longitude obtained at the same frequency and observatory during apparitions about 12 years (one Jovian year) apart were cross correlated. The longitude shift giving maximum cross correlation was used to correct the initially assumed rotation period value. The mean of the measurements is 9 hr 55 min 29.689 sec, with a standard deviation of the mean of 0.005 sec. This is about 0.02 sec, or 4 standard deviations, less than the System III (1965) value. The measurements indicate that the rotation period was not changing (linearly) at a rate in excess of 0.03 sec/yr. If the synoptic monitoring program is continued through the next maximum of the jovicentric declination of the Earth (DE), we will probably be able to detect a rate of change in rotation period as small as 0.002 sec/yr. This accuracy might be sufficient to reveal a secular drift in Jupiter's magnetic field.  相似文献   

13.
Robert A. West 《Icarus》1979,38(1):12-33
Spatially resolved measurements of Jupiter's absolute reflectivity in methane bands at 6190, 7250, and 8900 Å and nearby continuum regions are presented. The data were obtained with a 400 × 400 pixel charge-coupled device (CCD) at the 1.54-m Catalina telescope near Tucson, Arizona. Jupiter was imaged on the CCD through narrow-band interference filters. Photometric standard stars were also measured. Calibration data were obtained to remove instrumental effects. Uncertainty in the absolute reflectivity is ±8%. Uncertainty in the relative (across the disk) reflectivity is 1 or 2%. Uncertainty in the geomtry is ±1 pixel (0.22 arcsec) for centering and ±1% in scale. Intensity and scattering geometry are tabulated for points across 10 axisymmetric cloud bands and the Great Red Spot. Because of their high spatial, photometric, and time resolution, these data provide strong constraints on models of the Jovian cloud structure.  相似文献   

14.
Graboske et al. (1973) have shown that Jupiter's luminosity was orders of magnitude larger during its initial contraction phase than it is today. As a result, during Jupiter's earliest contraction history, ices would have preferentially been prevented from condensing within the region containing the orbits of the inner satellites. The observed variation of the mean density of the Galilean satellites with distance from Jupiter implies that the satellite formation process was operative on a time scale of about five million years. Another consequence of the high luminosity phase is that water should be the only ice present in significant proportions in any of the Galilean satellites.  相似文献   

15.
We present the classification of optical identifications and radio spectra of six radio sources from a complete (in flux density) sample in the declination range 10° to 12°30′ (J2000.0). The observations were carried out with the 6-m Special Astrophysical Observatory telescope (Russia) in the wavelength range 3600–10000 Å, the 2.1-m GHAO telescope (Mexico) in the range 4200–9000 Å, and the RATAN-600 radio telescope in the frequency range 0.97–21.7 GHz. Three of the six objects under study are classified as quasars, one is a BL Lac object, one is an absorption-line radio galaxy, and one is an emission-line radio galaxy. Five objects have flat radio spectra, and one object has a power-law radio spectrum. All of the radio sources identified as quasars or BL Lac objects show variable radio flux densities. The spectra of three objects were separated into extended and compact components.  相似文献   

16.
There is a current need for a redefinition of the Jovian System III longitude measure. We report on a proposed new definition which has been widely circulated among users and has met with general acceptance. Some errors in current calculations of System III [1957.0] are not noted so that these errors can be avoided in future calculations.  相似文献   

17.
O.L. Hansen 《Icarus》1973,18(2):237-246
Eclipse observations of Jupiter's satellites Io, Europa, and Ganymede have been obtained in an 8 to 14-μm band pass during 1971. The simplest thermal model able to explain the data for each satellite is a two-layer surface structure with an upper layer, only a few millimeters thick, having low thermal conductivity consistent with fine rock powder or frost, and a subsurface having high thermal conductivity consistent with solid rock or dense ice. The upper layer on Io (γ = 1100 ± 100)2 appears to be different from that on Europa (γ = 3000 ± 1000) and Ganymede (γ = 3400 ± 700), but the two-layer model fits all three satellites.  相似文献   

18.
Jupiter's Galilean satellites I–IV, Io, Europa, Ganymede, and Callisto have been observed with the VLA at 2 and 6 cm. The Jovian system was about 4.46 AU from the Earth at the time the observations were taken. The flux densities for satellites I–IV at 2 cm are 15 ± 2, 5.6 ± 1.2, 22.3 ± 2.0, and 26.0 ± 2.5 mJy, respectively, which corresponds to disk brightness temperatures of 92 ± 13, 47 ± 10, 67 ± 6, and 92 ± 9°K, respectively. At 6 cm flux densities of 1.10 ± 0.2, 0.55 ± 0.12, 2.0 ± 0.2, and 3.15 ± 0.2 mJy were found, corresponding to temperatures of 65 ± 11, 44 ± 10, 55 ± 6, and 105 ± 7°K, respectively. The radio brightness temperatures are lower than the infrared, the latter generally being consistent with the temperature derived from equilibrium with absorbed insolation. The radio temperature are qualitatively consistent with the equilibrium temperature for fast rotating bodies considering the high radio reflectivity (low emissivity) as determined from radar measurements by S. J. Ostro (1982). In Satellites of Jupiter (D. Morrison, Ed.). Univ. of Arizona Press, Tucson).  相似文献   

19.
S. Cortesi 《Icarus》1978,33(2):410-413
We have quantitatively determined the phase exaggeration effect (Phillips effect) as a function of the planet's phase angle for the correction of the longitude of spots on the Jupiter disk. This was done on the basis of over 1000 visual observations of the longitude of permanent details of Jupiter's surface compared with photographic observations. We also propose the existence of a systematic error (+0°.6 zenographic) in our visual observations. As this error is probably caused by unidirectional motion of the detail over the planetary disk, we named it the “shift effect”.  相似文献   

20.
The spectral reflectance from 0.38 to 0.75 μm of a column of liquid sulfur has been measured at several temperatures between the melting point (~118°C) and 173°C. Below 160°C the spectral reflectance was observed to vary reversibly as a function of temperature, independent of the previous thermal history of the column. Once the temperature exceeded 160°C, the spectrum would not change given a subsequent decrease in temperature. The spectral reflectance of the liquid-sulfur column at all temperatures was very low (10–19%). Combining this information with Voyager spectrophotometry of Jupiter's satellite Io, it is concluded that liquid sulfur at any temperature on Io's surface would be classified as a “black area” according to the standards used by the Voyager imaging team in their spectrophotometric analysis (L. Soderblom, T. V. Johnson, D. Morrison, E. Danielson, B. L. Smith, J. Veverka, A. Cook, C. Sagan, P. Kupferman, D. Pieri, J. Mosher, C. Avis, J. Gradie, and T. Clancy (1980). Geophys. Res. Lett.7, 963–966).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号