首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The Yinshan deposit in the Jiangnan tectonic belt in South China consists of Pb‐Zn‐Ag and Cu‐Au ore bodies. This deposit contains approximately 83 Mt of the Cu‐Au ores at 0.52% Cu and 0.8 g/t Au, and 84 Mt of the Pb‐Zn‐Ag ores at 1.25% Pb, 1.02% Zn and 33.3 g/t Ag. It is hosted by low‐grade metamorphosed sedimentary rocks and mafic volcanic rocks of the lower Mesoproterozoic Shuangqiaoshan Group, and continental volcanic rocks of the Jurassic Erhuling Group and dacitic subvolcanic rocks. The ore bodies mainly consist of veinlets of sulfide minerals and sulfide‐disseminated rocks, which are divided into Cu‐Au and Pb‐Zn‐Ag ore bodies. The Cu‐Au ore bodies occur in the area close to a dacite porphyry stock (No. 3 stock), whereas Pb‐Zn‐Ag bodies occur in areas distal from the No. 3 stock. Muscovite is the main alteration mineral associated with the Cu‐Au ore bodies, and muscovite and chlorite are associated with the Pb‐Zn‐Ag ores. A zircon sensitive high‐resolution ion microprobe U‐Pb age from the No. 3 dacite stock suggests it was emplaced in Early Jurassic. Three 40Ar‐39Ar incremental‐heating mineral ages from muscovite, which are related to Cu‐Au and Pb‐Zn‐Ag mineralization, yielded 179–175 Ma. These muscovite ages indicate that Cu‐Au mineralization occurred at 178.2±1.4 Ma (2σ), and Pb‐Zn‐Ag mineralization at 175.4±1.2 Ma (2σ) and 175.3±1.1 Ma (2σ), which supports a restricted period for the mineralization. The Early Jurassic ages for the mineralization at Yinshan are similar to that of the porphyry Cu mineralization at Dexing in Jiangnan tectonic belt, and suggest that the polymetallic mineralization occurred in a regional transcompressional tectonic regime.  相似文献   

2.
西太平洋冲绳海槽烟囱硫化物矿床矿石化学特征与分带型式   总被引:12,自引:0,他引:12  
侯增谦  T. Urabe 《地球学报》1997,18(2):171-181
西太平洋冲绳海槽烟囱式硫化物矿床分布于琉球弧后扩张盆地、产于尹是名洼陷盆地(深1400m),其特征与日本黑矿类似。硫化物矿石及烟囱主要有3种化学类型:Pb-Zn-Ba型、Zn-Pb型和Cu-Zn型,三者分别代表温度不断升高的热液体系的早、中、晚3个成矿阶段产物,其中,Pb-Zn-Ba矿石及烟囱形成于高fo2环境和高流速、低温、富Pb、Zn、Ba热液体系,Cu-Zn矿石及烟囱形成于低流速、高温、富Cu热液体系,Zn-Pb矿石则介于其间。硫化物烟囱显示明显的矿物-化学分带。在Pb-Zn-Ba矿石(烟囱),Zn、Cd集中于烟囱中央,Ba、Fe、As、Sb、Ag、Pb集中于烟囱外带,Cu则富集于烟囱中外部。在Cu-Zn矿石,As、Sb、Fe、Ag、Au仍富集于烟囱外带,Cu、Zn、Pb则在烟囱中央富集。依此元素化学分带型式,建立了古代黑矿硫化物矿体分带与硫化物堆积模式。  相似文献   

3.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

4.
《International Geology Review》2012,54(13):1478-1507
The Central and Eastern Taurides contain numerous carbonate-hosted Pb–Zn deposits, mainly in Devonian and Permian dolomitized reefal–stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them.

Fluid inclusion studies reveal that the ore fluids were highly saline (13–26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Da?, Delikkaya, and Ayrakl? deposits, respectively. Furthermore, the δ34S values of carbonate-hosted Pb–Zn deposits in the Central and Eastern Taurides vary between –5.4‰ and?+13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average δ34S –0.15‰) for the Çad?rkaya deposit, which is related to a late Eocene–Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Suçat? district, all deposits in the Eastern (Delikkaya, Ayrakl?, Denizovas?, Çad?rkaya) and Central (Katranba??, Küçüksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts.

Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Çad?rkaya deposit) and the Central Taurides are similar to MVT Pb–Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous–Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur?+?lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate–carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the ‘wall-rock replacement’ and the ‘residual and karst fill’ of non-sulphide zinc deposits and are predominantly composed of smithsonite.  相似文献   

5.
赣东北“金三角区”成矿带的划分及成矿模式   总被引:1,自引:0,他引:1       下载免费PDF全文
在对赣东北"金三角区"成矿带划分的基础上,分析总结了各重点成矿带的成矿模式.由于区内不同构造单元基底性质、深部构造和壳幔结构方面的差异,产生各地质单元中不同的矿床集结,如东乡-德兴成矿带以Cu,Au矿床为主,Pb,Zn,Ag矿床为次;信江南侧成矿带以Cu,Pb,Zn,Ag多金属矿床产出为主,Au矿床次之;而灵山-怀玉山成矿带则以Nb,Ta等稀有金属矿床为特点,其次为Pb,Zn,W,Sn等矿床.  相似文献   

6.
Central Fujian Rift is another new and important volcanogenic massive sulfide Pb-Zn polymetallic metallogenetic belt. In order to find out the material genesis and mineralization period of Meixian-type Pb-Zn-Ag deposits, S and Pb isotope analysis and isotope geochronology of ores and wall rocks for five major deposits are discussed. It is concluded that the composition of sulfur isotope from sulfide ore vary slightly in different deposits and the mean value is close to zero with the 834S ranging from -3.5‰ to +5.6‰ averaging at +2.0‰, which indicates that the sulfur might originate from magma or possibly erupted directly from volcano or was leached from ore-hosted volcanic rock. The lead from ores in most deposits displays radioactive genesis character (206pb/204pb〉18.140, 207Pb/204pb〉15.584, 208pb/204pb〉38.569) and lead isotope values of ores are higher than those of wall rocks, which indicates that the lead was likely leached from the ore-hosted volcanic rocks. Based on isotope data, two significant Pb-Zn metallogenesis are delineated, which are Mid- and Late-Proterozoic sedimentary exhalative metailogenesis (The single zircon U-Pb, Sm-Nd isochronal and Ar-Ar dating ages of ore- hosted wall rocks are calculated to be among 933-1788 Ma.) and Yanshanian magmatic hydrothermal superimposed and alternated metallogenesis (intrusive SHRIMP zircon U-Pb and Rb-Sr isochronal ages between 127-154 Ma).  相似文献   

7.
The Lanping basin is a significant Pb–Zn–Cu–Ag mineralization belt in the Sanjiang Tethyan metallogenic province. A series of sediment-hosted Himalayan Cu–Ag–Pb–Zn polymetallic deposits have been discovered in the western part of the basin, controlled by a thrust–nappe system. In the thrust–nappe system, the Cu orebodies mainly occur in the western and relatively deep part of the mineralization system (the root zone), whereas the Pb–Zn–Ag (± Cu) orebodies occur in the eastern and relatively shallow part of the system (the front zone), both as vein-type mineralization.In this paper we present new data, combined with existing data on fluid inclusions, isotopes and geologic characteristics of representative deposits, to provide the first study that contrasts mineralizing fluids in the Cu–Ag (Mo) and Pb–Zn–Ag (Cu) polymetallic deposits.Fluid inclusion and isotope studies show that the Cu–Ag (Mo) mineralization in the root zone formed predominantly from deep crustal fluids, with the participation of basinal brines. The deep crustal fluids are marked by high CO2 content, relatively high temperatures (280 to 340 °C) and low salinities (1 to 4 wt.% NaCl equivalent), whereas the basinal brine shows relatively low temperatures (160 °C to 220 °C) and high salinities (12 to 22 wt.% NaCl equivalent), containing almost no CO2. In comparison, hydrothermal activity associated with the Pb–Zn–Ag (± Cu) deposits in the front zone is characterized by basinal brine, with relatively low temperatures (130 °C to 180 °C), high salinities (9 to 24 wt.% NaCl equivalent), and low CO2 concentrations. Although evolved meteoric waters have predominantly been proposed as the source for deep crustal fluids, magmatic and metamorphic components cannot be completely excluded. The basinal brine was predominantly derived from meteoric water.The δ34S values of sulfides from the Cu–Ag (Mo) deposits and Pb–Zn–Ag (± Cu) deposits range from − 17.9 to 16.3‰ and from 2.5 to 11.2‰, respectively. These ranges may relate to variations in physicochemical conditions or compositional variation of the sources. Lead isotope compositions indicate that the ore-forming metals were predominantly derived from sedimentary rocks of the Lanping basin.  相似文献   

8.
95 analyses of ore lead isotope ratios from 23 Phanerozoic ore deposits from the Swedish segment of the Fennoscandian Shield form a marked linear trend on a 207Pb/204Pb versus 206Pb/204Pb diagram. The line may be interpreted in a two-stage model, the lead being derived from 1.8±0.15 Ga old Svecokarelian basement and mineralization occurring at 0.4±0.15 Ga. The initial composition of the Svecokarelian rock lead was similar to the lead in early Proterozoic volcanogenic sulfide ores in Sweden. — The large spread in the isotope ratios was caused by a combination of selective leaching of different minerals in the source rocks, mixing with less radiogenic Caledonian lead, and local or regional variations in the U, Th and Pb contents of the basement. As a consequence, conventional methods of identifying source rocks from lead isotopic data (e.g. mu-values, Th/U ratios) may not be directly applicable. Phanerozoic ore lead development in the Swedish section of the Fennoscandian Shield was ensialic. That is, the ore lead was almost entirely derived from the Precambrian basement, although this basement does not appear to be anomalously enriched in Pb. No juvenile or mantle lead was apparently contributed to this section of the crust after the Precambrian, except for that mechanically transported onto the western edge of the Shield by the Caledonian nappes. However, some of Europe's largest lead deposits are included in these Swedish Phanerozoic mineralizations, suggesting that it was the nature of the processes involved rather than the richness of the source, that determined their formation.  相似文献   

9.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   

10.
Besshi-type volcanic-associated massive sulfide deposits (VMSD) are associated with undifferentiated basaltic formations. They form within the mid-ocean ridges near the continental margins, in back-arc spreading zones, and rarely in intracontinental rift basins. They are characterized by a wide spread of turbidites in ore-bearing strata, Co-rich copper-zinc ores, the predominance of subvolcanic sills, sheet-like ore bodies, an absence of clear structural control, relatively low Cu, Zn, Ag, and Au grades, enrichment in Pb, and relatively large ore and metal reserves.  相似文献   

11.
论华南喷流—沉积块状硫化物矿床   总被引:28,自引:1,他引:27  
现代海底喷流-沉积硫化物矿床的发现极大地推动了海底热液成矿理论的发展,也大大地提高了对古代海底喷流块充化物矿术的研究水平。本文指出喷流-沉积是重要的成矿作用,提出喷流-沉积矿床是华南Cu、Pb、Zn、Sn、Ag、Au等矿产资源的重要来源,形成了一批超大型矿床,并将华南许多曾被认为属夕卡岩矿床重新确认为喷流-沉积岩床。文章还论述了华南喷流-沉积块状硫化物矿床的特征、分类、时空分布及其成矿特点等问题,提出断裂拗陷带型喷流-沉积块状硫化物矿床是华南具有特色的类型,而陆相断陷盆地中喷流-沉积矿床值得进一步深入研究。  相似文献   

12.
The relationship between mineralogical characteristics and isotopic composition of sulfides has not received its proper share of attention from geologists, although many references are available concerning the application of sulfur isotopes to geological problems. Located in the vicinity of the contact region between the Yangtze Platform and the South China Caledonian Folding Zone, the Huxu deposit is hosted in a structural zone in quartz-diorite-porphyrite emplaced in Jurassic volcanic rocks. Sphalerite and galena are the principal ore minerals in the deposit. (1) Sphalerite is highly variable in color and this variation can be related to its chemical composition and sulfur isotopic characters. Dark colored sphalerites are poor in Zn and Ni, rich in Pb, Cu, Fe, Ag and Au and have high δ34S values, while the opposite is true for light-colored ones. (2) δ34S of sphalerite is negatively correlated with the contents of Zn and Ni and positively correlated with the contents of Pb, Cu, Ag and Au, with the absolute values of the correlation coefficients being greater than 0.7. The above two characters suggest that the sulfur isotopic composition of sphalerite is controlled not only by the physicochemical conditions under which the mineral was formed, but also by mineralogical characteristics of the host mineral. (3) Apparent correlations exist among the constituent elements in the sphalerite. For example, Zn is negatively correlated with Cu, Pb, Fe, Ag and Au and positively correlated with Ni. (4) Sphalerites of the same color in the same hand specimen always show similar characters with respect to trace element and sulfur isotopes. (5) Two distinct trends of evolution can be recognized between Zn and Cu, Zn and Pb, Zn and Ag and between these elements on one hand and δ34S on the other, reflecting that the ore-forming solutions may have resulted from mixing of fluids of different origins. (6) Pb is uniformly distributed in sphalerite and shows positive correlations with Cu, Fe, Ag and δ34S, suggesting isomorphic substitution in the sphalerite lattice. This project was financially supported by the Open Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences.  相似文献   

13.
The Huangshaping Pb–Zn–W–Mo polymetallic deposit, located in southern Hunan Province, China, is one of the largest deposits in the region and is unique for its metals combination of Pb–Zn–W–Mo and the occurrence of significant reserves of all these metals. The deposit contains disseminated scheelite and molybdenite within a skarn zone located between Jurassic granitoids and Carboniferous sedimentary carbonate, and sulfide ores located within distal carbonate-hosted stratiform orebodies. The metals and fluids that formed the W–Mo mineralization were derived from granitoids, as indicated by their close spatial and temporal relationships. However, the source of the Pb–Zn mineralization in this deposit remains controversial.Here, we present new sulfur, lead, and strontium isotope data of sulfide minerals (pyrrhotite, sphalerite, galena, and pyrite) from the Pb–Zn mineralization within the deposit, and these data are compared with those of granitoids and sedimentary carbonate in the Huangshaping deposit, thereby providing insights into the genesis of the Pb–Zn mineralization. These data indicate that the sulfide ores from deep levels in the Huangshaping deposit have lower and more consistent δ34S values (− 96 m level: + 4.4‰ to + 6.6‰, n = 13) than sulfides within the shallow part of the deposit (20 m level: + 8.3‰ to + 16.3‰, n = 19). The δ34S values of deep sulfides are compositionally similar to those of magmatic sulfur within southern Hunan Province, whereas the shallower sulfides most likely contain reduced sulfur derived from evaporite sediments. The sulfide ores in the Huangshaping deposit have initial 87Sr/86Sr ratios (0.707662–0.709846) that lie between the values of granitoids (0.709654–0.718271) and sedimentary carbonate (0.707484–0.708034) in the Huangshaping deposit, but the ratios decreased with time, indicating that the ore-forming fluids were a combination of magmatic and formation-derived fluids, with the influence of the latter increasing over time. The lead isotopic compositions of sulfide ores do not correlate with sulfide type and define a linear trend in a 207Pb/204Pb vs. 206Pb/204Pb diagram that is distinct from the composition of the disseminated pyrite within sedimentary carbonates and granitoids in the Huangshaping deposit, but is similar to the lead isotopic composition of sulfides within coeval skarn Pb–Zn deposits in southern Hunan Province. In addition, the sulfide ores have old signatures with relative high 207Pb/206Pb ratios, suggesting that the underlying Paleoproterozoic basement within southern Hunan Province may be the source of metals within the Huangshaping deposit.The isotope geochemistry of sulfide ores in the Huangshaping deposit shows a remarkable mixed source of sulfur and ore-forming fluids, and the metals were derived from the basement. These features are not found in representative skarn-type Pb–Zn mineralization located elsewhere. The ore-forming elements (S, Pb, and Zn) from the granitoids made an insignificant contribution to sulfide precipitation in this deposit. However, the emplacement of granitoids did provide large amounts of heat and fluids to the hydrothermal system in this area and extracted metals from the basement rocks, indicating that the Jurassic magmatism associated with the Huangshaping deposit was crucial to the Pb–Zn mineralization.  相似文献   

14.
The evolution of the geological structure in the Southern Argun’ Region is studied in terms of changing geodynamic conditions of the Proterozoic, Caledonian, and Variscan Tectonomagmatic Cycles, which also under Mesozoic tectonomagmatic activation led to the formation of latite igneous rocks enriched in Au, Cu–Mo, Pb–Zn–Ag, volcanic and plutonic complexes of the caldera structures with Mo–U, Pb–Zn, and fluorite ores, and rare-metal granites with a Sn–W–Li–Ta spectrum.  相似文献   

15.
白秧坪银铜多金属矿集区位于兰坪盆地北部。矿集区可分为东、西两个成矿带。赋矿地层主要为上三叠统三合洞组碳酸盐岩、第三系始新统保相寺组碎屑岩和下白垩统景星组碎屑岩。矿体主要以脉状、网脉状及透镜状形式产出。作者通过显微镜观察、电子探针和扫描分析等综合分析技术,确认白秧坪银铜多金属矿集区中矿物组成相当丰富,已鉴定出的矿物超过50种,既有大量硫化物、硫盐、氧化物、硫酸盐、碳酸盐,又有自然金属及金属互化物、卤化物等。除常见矿物为黄铁矿、毒砂、白铁矿、黄铜矿、方铅矿、闪锌矿、黝铜矿、砷黝铜矿、铜蓝、斑铜矿、辉铜矿、雌黄、菱铁矿、方解石、铁白云石、重晶石、天青石和石英外,作者还鉴定出一些银、钴、铋、镍、砷、锑的矿物,如自然铋、辉铋矿、辉银矿、辉砷钴矿、硫钴镍矿、硫铜铋矿、硫铋铜矿、辉砷镍矿、车轮矿、硫砷铜矿、单斜硫砷铅矿、灰硫砷铅矿等。矿石中矿物种类较多,组成较复杂,存在Co,Bi,Ni等元素的矿物,构成白秧坪银铜多金属矿集区的一大特色。在兰坪盆地白秧坪银铜多金属矿集区各矿段内,除了Cu、Pb、Zn构成工业矿体外,矿石中Ag、Co、Ni、Bi及As、Sb、Ba等元素的含量也相当高,可作为Cu-Pb-Zn-Ag-Co-Ni-Bi矿石来综合开发利用。白秧坪银铜多金属矿集区中Ag、Co、Ni、Bi等元素富集条件为低温、中低盐度,形成压力较小的浅成环境;成矿流体是一种富含CO2的Ca2+-Na+-SO24-Cl-类型、由大气降水演化而成的盆地热卤水。成矿物质主要来源于含有基性火山岩的兰坪盆地基底变质岩系。  相似文献   

16.
Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone, the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are representative Pb-Zn deposits of the Pb-Zn-Cu polymetallic mineralization belt in the northern part of the Nujiang-Lancangjiang-Jinshajiang area, which are in the front belt of the Yushu thrust nappe system. The formed environments of these two deposits are different from those of sediment-hosted base metal deposits elsewhere in the world. The authors hold that they were formed during the Indian-Asian continental collision and developed within the foldthrust belt combined with thrust and strike-slip-related Cenozoic basins in the interior of the collisional zone. Studying on the metallogenic epochs of these two deposits is helpful to the understanding of ore-forming regularity of the regional Pb-Zn-Cu mineralization belt and also to the search for new deposits in this region. The age of the Dongmozhazhua deposit has been determined by the Rb-Sr isochron method for sphalerite residues, whereas the age of the Mohailaheng deposit has been determined by the Rb-Sr isochron method for sphalerite residues and the Sm-Nd isochron method for fluorite. The age of the Dongmozhazhua deposit is 35.0±0.0 Ma((87Sr/86Sr)0=0.708807) for sphalerite residues. The age of the Mohailaheng deposit is 32.2±0.4 Ma((87Sr/86Sr)0=0.708514) for sphalerite residues and 31.8±0.3 Ma((143Nd/144Nd)0=0.512362) for fluorite with an average of 32.0 Ma. Together with the regional geological setting during mineralization, a possible tectonic model for metallogeny of the Dongmozhazhua and Mohailaheng Pb-Zn deposits has been established. These two ages are close to the ages of the Pb-Zn deposits in the Lanping and Tuotuohe basins, indicating that it is possible that the narrow 1000-kilometer-long belt controlled by a thrust nappe system on the eastern and northern margins of the Tibetan plateau could be a giant Pb-Zn mineralized belt.  相似文献   

17.
The geotectonic units of Zhejiang Province include the Yangtze Plate in the northwest juxtaposed against the South China fold system in the southeast along the Jiangshan–Shaoxing fault. The South China fold system is further divided into the Chencai–Suichang uplift belt and the Wenzhou–Linhai geotectogene belt, whose boundary is the Yuyao–Lishui fault. The corresponding metallogenic belts are the Mo–Au(–Pb–Zn–Cu) metallogenic belt in northwest Zhejiang, the Chencai–Suichang Au–Ag–Pb–Zn–Mo metallogenic belt, and the coastal Ag–Pb–Zn–Mo–Au metallogenic belt. The main Mesozoic metal ore deposits include epithermal Au–Ag(Ag), hydrothermal vein-type Ag–Pb–Zn(Cu), and porphyry–skarn-type Mo and vein-type Mo deposits. These ore bodies are related to the Mesozoic volcanic-intrusive structure: the epithermal Au–Ag(Ag) deposits are represented by the Zhilingtou Au–Ag deposit and Houan Ag deposit and their veins are controlled by volcanic structure; the hydrothermal vein-type Ag–Pb–Zn deposits are represented by the Dalingkou Ag–Pb–Zn deposit and also controlled by volcanic structure; and the porphyry–skarn-type Mo deposits are represented by the Tongcun Mo deposit and the vein-type Mo deposits are represented by the Shipingchuan Mo deposit, all of which are related to granite porphyries. These metal ore deposits have close spatio-temporal relationships with each other; both the epithermal Au–Ag(Ag) deposits and the hydrothermal vein-type Ag–Pb–Zn deposits exhibit vertical zonations of the metallic elements and form a Mo–Pb–Zn–Au–Ag metallogenetic system. These Jurassic–Cretaceous deposits may be products of tectonic-volcanic-intrusive magmatic activities during the westward subduction of the Pacific Plate. Favourable metallogenetic conditions and breakthroughs in the recent prospecting show that there is great resource potential for porphyry-type deposits (Mo, Cu) in Zhejiang Province.  相似文献   

18.
The Näsliden and Rävliden deposits in the Skellefte field consist of stratiform massive sulfide ores associated with submarine volcanic and clastic rocks. The ores are pretectonic. Consequently, the orebodies are considered to have formed syngenetically with deposition of the host rocks. Banding and interlayering with host sediments are common features. Cu : Zn and Zn : Pb ratios of the ores show stratigraphically and laterally defined trends. Cu : Pb : Zn ratios correspond with those found in other deposits of volcanogenic origin. Nonstratiform breccia Cu mineralizations occur directly under the massive stratiform ores in the footwall rocks where hydrothermal alteration is strongest. Ore formation took place intermittently resulting in clusters of ore systems occurring at slightly different stratigraphical levels within each deposit.  相似文献   

19.
The Linghou deposit, located near Hangzhou City of Zhejiang Province, eastern China, is a medium-sized polymetallic sulfide deposit associated with granitic intrusion. This deposit is structurally and lithologically controlled and commonly characterized by ore veins or irregular ore lenses. In this deposit, two mineralization events were identified, of which the former produced the Cu–Au–Ag orebodies, while the latter formed Pb–Zn–Cu orebodies. Silicification and calc-silicate (skarn type), phyllic, and carbonate alternation are four principal types of hydrothermal alteration. The early Cu–Au–Ag and late Pb–Zn–Cu mineralizations are characterized by quartz ± sericite + pyrite + chalcopyrite + bornite ± Au–Ag minerals ± magnetite ± molybdenite and calcite + dolomite + sphalerite + pyrite + chalcopyrite + galena, respectively. Calcite clusters and calcite ± quartz vein are formed during the late hydrothermal stage.The NaCl–H2O–CO2 system fluid, coexisting with NaCl–H2O system fluid and showing the similar homogenization temperatures (385 °C and 356 °C, respectively) and different salinities (16.89–21.68 wt.% NaCl eqv. and 7.70–15.53 wt.% NaCl eqv.), suggests that fluid immiscibility occurred during the Cu–Au–Ag mineralization stage and might have given rise to the ore-metal precipitation. The ore-forming fluid of the Pb–Zn–Cu mineralization mainly belongs to the NaCl–H2O–CO2 system of high temperature (~ 401 °C) and mid-high salinity (10.79 wt.% NaCl eqv.).Fluids trapped in the quartz-chalcopyrite vein, Cu–Au–Ag ores, Pb–Zn–Cu ores and calcite clusters yielded δ18OH2O and δD values varying from 5.54‰ to 13.11‰ and from − 71.8‰ to − 105.1‰, respectively, indicating that magmatic fluids may have played an important role in two mineralization events. The δ13CPDB values of the calcite change from − 2.78‰ to − 4.63‰, indicating that the CO32  or CO2 in the ore-forming fluid of the Pb–Zn–Cu mineralization was mainly sourced from the magmatic system, although dissolution of minor marine carbonate may have also occurred during the ore-forming processes. The sulfide minerals have homogeneous lead isotopic compositions with 206Pb/204Pb ranging from 17.958 to 18.587, 207Pb/204Pb ranging from 15.549 to 15.701, and 208Pb/204Pb ranging from 37.976 to 39.052, indicating that metallic elements of the Linghou deposit came from a mixed source involving mantle and crustal components.Based on geological evidence, fluid inclusions, and H–O–C–S–Pb isotopic data, the Linghou polymetallic deposit is interpreted as a high-temperature, skarn-carbonate replacement type. Two types of mineralization are both related to the magmatic–hydrothermal system, with the Cu–Au–Ag mineralization having a close relationship with granodiorite.  相似文献   

20.
All the indium-rich deposits with indium contents in ores more than 100×10- 6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10-6 to 236×10-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10-6 to 81×10-6 and zinc from 164×10-6 to 309×10-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of In-poor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10-6-4.1×10-6 and 7×100-6-55×10-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10-6-0.09×10-6 and 0.4×10-6--2.0×10-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich ore-forming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号