首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that the overall (mean) intensity of the low-mass X-ray binary Cyg X-2 varies on time-scales from a day to months, independently of the variations on time-scales of hours to a day by which the source moves between the horizontal, normal and flaring branches.
We present RXTE PCA observations of Cyg X-2, taken when its overall intensity was near its lowest values, in 1996 October and 1997 September. For the first time we perform a study of the fast timing behaviour at such low intensities. During the 1996 October observations, the source was in the left part of the horizontal branch, and during the 1997 September observations was most likely in the lower parts of the normal branch and flaring branch.
We find that the properties of the very low-frequency noise during the 1997 September observations are consistent with a monotonic decrease in its strength and power-law index as a function of overall intensity. In contrast, the strength of the ∼6 Hz normal branch quasi-periodic oscillations does not vary monotonically with overall intensity. They are strongest at medium overall intensity and weaker both when the overall intensity is low and when the overall intensity is high.  相似文献   

2.
3.
4.
We present the results of a systematic investigation of spectral evolution in the Z source GX 349+2, using data obtained during 1998 with the Proportional Counter Array (PCA) on-board the RXTE satellite. The source traced a extended normal branch (NB) and flaring branch (FB) in the colour–colour diagram (CD) and the hardness-intensity diagram (HID) during these observations. The spectra at different positions of the Z-track were best fitted by a model consisting of a disc blackbody and a Comptonized spectrum. A broad (Gaussian) iron line at ∼6.7 keV is also required to improve the fit. The spectral parameters showed a systematic and significant variation with the position along the Z-track. The evolution in spectral parameters is discussed in view of the increasing mass accretion rate scenario, proposed to explain the motion of Z sources in the CD and the HID.  相似文献   

5.
6.
We consider the evolution of neutron stars during the X-ray phase of high-mass binaries. Calculations are performed assuming a crustal origin of the magnetic field. A strong wind from the companion can significantly influence the magnetic and spin behaviour of a neutron star even during the main-sequence life of the companion. In the course of evolution, the neutron star passes through four evolutionary phases ('isolated pulsar', propeller, wind accretion, and Roche lobe overflow). The model considered can naturally account for the observed magnetic fields and spin periods of neutron stars, as well as the existence of pulsating and non-pulsating X-ray sources in high-mass binaries. Calculations also predict the existence of a particular sort of high-mass binary with a secondary that fills its Roche lobe and a neutron star that does not accrete the overflowing matter because of fast spin.  相似文献   

7.
为解释Be/X射线双星波段联合观测结果,已发展了许多理论模型。在本文中简述这些Be/X射线双星理论模型的研究现状,包括枞两个正常的B型星组成的密近双星演化成为Be/X射线双星的演化模型,描述Be星气壳的物理模型,Be星和中子星的性质所决定的中子星吸积方式的吸积量及Be/X射线双星X射线源光变曲线的理论解释。  相似文献   

8.
We analyzed the recently published kHz quasi-period oscillaiton (QPO) data in the neutron star low-mass X-ray binaries (LMXBs), in order to investigate the different correlations of the twin-peak kHz QPOs in bright Z sources and in the less luminous Atoll sources. We find a power-law relation  ν1∼ν b 2  between the upper and the lower kHz QPOs with different indices: b ≃ 1.5 for the Atoll source 4U 1728-34 and b ≃ 1.9 for the Z source Sco X-1. The implications of our results for the theoretical models for kHz QPOs are discussed.  相似文献   

9.
10.
We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variati on with the spin-down rate Ω. Based onan accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate M. The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing M. A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.  相似文献   

11.
The spectra of disc accreting neutron stars generally show complex curvature, and individual components from the disc, boundary layer and neutron star surface cannot be uniquely identified. Here we show that much of the confusion over the spectral form derives from inadequate approximations for Comptonization and for the iron line. There is an intrinsic low-energy cut-off in Comptonized spectra at the seed photon energy. It is very important to model this correctly in neutron star systems as these have expected seed photon temperatures (from either the neutron star surface, inner disc or self-absorbed cyclotron) of ≈1 keV, clearly within the observed X-ray energy band. There is also reflected continuum emission which must accompany the observed iron line, which distorts the higher energy spectrum. We illustrate these points by a reanalysis of the Ginga spectra of Cyg X-2 at all points along its Z track, and show that the spectrum can be well fitted by models in which the low-energy spectrum is dominated by the disc, while the higher energy spectrum is dominated by Comptonized emission from the boundary layer, together with its reflected spectrum from a relativistically smeared, ionized disc.  相似文献   

12.
We show that the light curves of soft X-ray transients (SXTs) follow naturally from the disc instability picture, adapted to take account of irradiation by the central X-ray source during the outburst. Irradiation prevents the disc from returning to the cool state until central accretion is greatly reduced. This happens only after most of the disc mass has been accreted by the central object, on a viscous time-scale, accounting naturally for the exponential decay of the outburst on a far longer time-scale (τ20–40 d) than seen in dwarf novae, without any need to manipulate the viscosity parameter α. The accretion of most of the disc mass in outburst explains the much longer recurrence time of SXTs compared with dwarf novae. This picture also suggests an explanation of the secondary maximum seen in SXT light curves about 50–75 d after the start of each outburst, since central irradiation triggers the thermal instability of the outer disc, adding to the central accretion rate one viscous time later. The X-ray outburst decay constant τ should on average increase with orbital period, but saturate at a roughly constant value ∼40 d for orbital periods longer than about a day. The bolometric light curve should show a linear rather than an exponential decay at late times (a few times τ). Outbursts of long-period systems should be entirely in the linear decay regime, as is observed in GRO J1744−28. UV and optical light curves should resemble the X-rays but have decay time-scales up to 2–4 times longer.  相似文献   

13.
14.
It is shown that the energy dependence of the time-lags in Cygnus X-1 excludes any significant contribution of the standard reflected component to the observed lags. The conclusion is valid in the     frequency range where time-lags have been detected with sufficient significance. In fact, the data hint that the reflected component is working in the opposite direction, reducing the lags at energies where the contribution of the reflected component is significant.
We argue that the observed logarithmic dependence of time-lags on energy could be due to the small variations of the spectral index in the frame of a very simple phenomenological model. We assume that an optically thin flow/corona, emitting a power law like spectrum, is present at a range of distances from the compact object. The slope of the locally emitted spectrum is a function of distance, with the hardest spectrum emitted in the innermost region. If perturbations with different time-scales are introduced to the accretion flow at different radii, then X-ray lags naturally appear, caused by the inward propagation of perturbations on the diffusion time-scales.  相似文献   

15.
16.
We study the effects of winds on the time evolution of isothermal, self-gravitating accretion discs by adopting a radius-dependent mass-loss rate because of the existence of the wind. Our similarity and semi-analytical solution describes time evolution of the system in the slow accretion limit. The disc structure is distinct in the inner and outer parts, irrespective of the existence of the wind. We show that the existence of wind will lead to a reduction of the surface density in the inner and outer parts of the disc in comparison to a no-wind solution. Also, the radial velocity significantly increases in the outer part of the disc, however, the accretion rate decreases due to the reduced surface density in comparison to the no-wind solution. In the inner part of the disc, mass loss due to the wind is negligible according to our solution. But the radial size of this no-wind inner region becomes smaller for stronger winds.  相似文献   

17.
18.
We present observations of the 1997 outburst of the X-ray transient GS 1354−64 (BW Cir) at X-ray, optical and, for the first time, radio wavelengths; our results include upper limits to the linear and circular polarization for the radio data. The X-ray outburst was unusual in that the source remained in the low/hard X-ray state throughout; the X-ray peak was also preceded by at least one optical outburst, suggesting that it was an 'outside-in' outburst – similar to those observed in dwarf novae systems, although possibly taking place on a viscous time-scale in this case. It therefore indicates that the optical emission was not dominated by the reprocessing of X-rays, but that instead we see the instability directly. While the radio source was too faint to detect any extended structure, spectral analysis of the radio data and a comparison with other similar systems suggest that mass ejections, probably in the form of a jet, took place and that the emitted synchrotron spectrum may have extended as far as infrared wavelengths. Finally, we compare this 1997 outburst of GS 1354−64 with possible previous outbursts and also with other hard-state objects, both transient and persistent. It appears that a set of characteristics – such as a weak, flat-spectrum radio jet, a mHz QPO increasing in frequency, a surprisingly high optical/X-ray luminosity ratio, and the observed optical peak preceding the X-ray peak – may be common to all hard-state X-ray transients.  相似文献   

19.
We present the results of simultaneous X-ray and radio observations of the peculiar Z-type neutron star X-ray binary Cir X-1, observed with the Rossi X-ray Timing Explorer satellite and the Australia Telescope Compact Array in 2000 October and 2002 December. We identify typical Z-source behaviour in the power density spectra as well as characteristic Z patterns drawn in an X-ray hardness–intensity diagram. Power spectra typical of bright atoll sources have also been identified at orbital phases after the periastron passage, while orbital phases before the periastron passage are characterized by power spectra that are typical neither of Z nor of atoll sources. We investigate the coupling between the X-ray and the radio properties, focusing on three orbital phases when an enhancement of the radio flux density has been detected, to test the link between the inflow (X-ray) and the outflow (radio jet) to/from the compact object. In two out of three cases, we associate the presence of the radio jet to a spectral transition in the X-rays, although the transition does not precede the radio flare, as detected in other Z sources. An analogous behaviour has recently been found in the black hole candidate GX 339-4. In the third case, the radio light curve shows a similar shape to the X-ray light curve. We discuss our results in the context of jet models, considering also black hole candidates.  相似文献   

20.
We report the detection of a stable super-orbital period in the high-mass X-ray binary 2S 0114+650. Analyses of data from the Rossi X-ray Timing Explorer All-Sky Monitor from 1996 January 5 to 2004 August 25 reveal a super-orbital period of 30.7±0.1 d, in addition to confirming the previously reported neutron star spin period of 2.7 h and the binary orbital period of 11.6 d. It is unclear if the super-orbital period can be ascribed to the precession of a warped accretion disc in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号