首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new set of three-dimensional velocity models beneath Mt. Etna volcano is derived in the present work. We have used P- and S-wave arrivals from local earthquakes recorded at permanent and temporary seismic networks installed since 1980. A set of 1249 earthquakes recorded at more than four seismic stations was selected for traveltime inversion. The velocity models obtained by using different data selection criteria and parametrization display similar basic features, showing a high P-wave velocity at shallow depth in the SE quadrant, in close connection with a high gravimetric Bouguer anomaly. This area shares a low Vp/Vs ratio. High P-wave velocities and high Vp/Vs ratios are obtained along the central conduits, suggesting the presence of dense, intrusive magmatic bodies extending to a depth of about 20 km. The central intrusive core is surrounded by lower P-wave velocities. The relocated earthquake hypocenters also display the presence of an outward dipping brittle region, away from the central conduits, surrounding a ductile zone spatially related to the high P-wave velocity anomalies located in proximity to the central craters.  相似文献   

2.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

3.
The July–August 2001 eruption of Mt. Etna stimulated widespread public and media interest, caused significant damage to tourist facilities, and for several days threatened the town of Nicolosi on the S flank of the volcano. Seven eruptive fissures were active, five on the S flank between 3,050 and 2,100 m altitude, and two on the NE flank between 3,080 and 2,600 m elevation. All produced lava flows over various periods during the eruption, the most voluminous of which reached a length of 6.9 km. Mineralogically, the 2001 lavas fall into two distinct groups, indicating that magma was supplied through two different and largely independent pathways, one extending laterally from the central conduit system through radial fissures, the other being a vertically ascending eccentric dike. Furthermore, one of the eccentric vents, at 2,570 m elevation, was the site of vigorous phreatomagmatic activity as the dike cut through a shallow aquifer, during both the initial and closing stages of the eruption. For 6 days the magma column feeding this vent was more or less effectively sealed from the aquifer, permitting powerful explosive and effusive magmatic activity. While the eruption was characterized by a highly dynamic evolution, complex interactions between some of the eruptive fissures, and changing eruptive styles, its total volume (~25×10 6 m 3 of lava and 5–10×10 6 m 3 of pyroclastics) was relatively small in comparison with other recent eruptions of Etna. Effusion rates were calculated on a daily basis and reached peaks of 14–16 m 3 s -1, while the average effusion rate at all fissures was about 11 m 3 s -1, which is not exceptionally high. The eruption showed a number of peculiar features, but none of these (except the contemporaneous lateral and eccentric activity) represented a significant deviation from Etna's eruptive behavior in the long term. However, the 2001 eruption could be but the first in a series of flank eruptions, some of which might be more voluminous and hazardous. Placed in a long-term context, the eruption confirms a distinct trend, initiated during the past 50 years, toward higher production rates and more frequent eruptions, which might bring Etna back to similar levels of activity as during the early to mid seventeenth century.  相似文献   

4.
Crystallization paths of basaltic (1763 eruption) and hawaiitic (1865 and 1329 eruptions) scoria from Etna were deduced from mineralogy and melt inclusion chemistry. The volatile behaviour was investigated through the study of melt inclusions trapped in the phenocrysts and those of the whole rocks and the matrix glasses. The results from the 1763 eruption point to the early crystallization of olivine Fo 81.7 from a water-rich alkaline basalt, with high Cl (1750–2000 ppm) and S (2100–2400 ppm) concentrations. The hawaiitic melt inclusions trapped in olivine Fo 74, salite and plagioclase are characterized by a decrease in Cl/K2O and S/K2O ratios. In each investigated system there is good correlation between K2O and P2O5. In the whole rocks, Cl ranges from 980 to 1680 ppm, from basaltic to hawaiitic lavas, whereas S (110–136 ppm) remains low. Cl and S behaviour in the 1763 magma suggests an early degassing stage of Cl and S, with CO2 and a water-rich gaseous phase for a pressure close to 100 MPa, consistent with a permanent outgassing at the summit craters of Etna. During the eruption, the sulphur remaining in the hawaiitic liquid is lost, and the degassing of chlorine is limited. Such a degassing model can be extended to the 1865 and 1329a.d. eruptions.  相似文献   

5.
Gabbroic rocks occur only in the west, and are the oldest intrusions in the Peninsular Ranges Cordilleran batholith. They comprise an olivine-pyroxene gabbronorite series and an amphibole gabbro series both of which contain abundant plagioclase and amphibole. They formed by crystal accumulation and in situ differentiation, in multiple intrusive complexes, and are not considered to be related by fractionation to the granitoid rocks of the batholith.Pure mineral separates of plagioclase, olivine, clinopyroxene, orthopyroxene, and amphibole were obtained by magnetic and heavy-liquid methods from a representative suite of gabbroic rocks. Their major- and trace-element contents were determined by X-ray fluorescence, and the data used to test hypotheses on the genesis and fractionation of the gabbros.The plagioclases range from An98 to An65 in composition, olivines, Fo79 to Fo70, occur in rocks where An>36. All clinopyroxenes are augite with Mg #'s varying from 81.1 to 64.7. Orthopyroxene occurs where An<92, and is generally inverted pigeonite or bronzite, and has Mg #'s ranging from 77.9 to 52.1. The amphiboles include tschermakite, tschermakitic hornblende, pargasite, pargasitic hornblende, ferroan pargasite, magnesio-hornblende, and magnesio-taramite, Mg #'s range from 80.4 to 62.5. Systematic chemical and mineralogical changes confirm that differentiation, controlled by mineral assemblages of plagioclase, olivine, spinel, and clinopyroxene initially, and orthopyroxene, amphibole, and magnetite later, took place between intrusive episodes and in situ.The highly clacic plagioclase coexisting with olivine and amphibole suggests that the gabbros were formed from hydrous mafic magmas. The modal mineralogy of the gabbros, and the chemistry of the minerals is very similar to that of the cumulate blocks of the Lesser Antillean volcanoes. These features confirm that the gabbros were derived from a hydrous mafic magma, with high Al2O3 and low TiO2 contents, typical of orogenic environments.Cumulate minerals from the gabbros show little or no zoning and are considered to have formed in equilibrium with the evolving melts. Selected trace-element contents and distribution coefficients are used to calculate the compositions of the melts. The calculations show that the melts in equilibrium with the olivine-pyroxene gabbronorite series contain approximately 100–200 ppm Ba, 200–400 ppm Sr, 30-10 ppm Ni, 20-10 ppm Co, and 300-100 ppm V. K/Rb ratios of the melts, derived from post-cumulus and prismatic amphiboles, are generally in the range 550-250. These values are typical of calc-alkalic basalts and andesites, and it is suggested that they may have erupted at the surface to form a coeval calc-alkalic volcanic sequence.  相似文献   

6.
Volcanic gases such as SO 2, H 2S, HCl and COS emitted during explosive eruptions significantly affect atmospheric chemistry and therefore the Earth's climate. We have evaluated the dependence of volcanic gas emission into the atmosphere on altitude, latitude, and tectonic setting of volcanoes and on the season in which eruptions occurred. These parameters markedly influence final stratospheric gas loading. The latitudes and altitudes of 360 active volcanoes were compared to the height of the tropopause to calculate the potential quantity of volcanic gases injected into the stratosphere. We calculated a possible stratospheric gas loading based on different volcanic plume heights (6, 10, and 15 km) generated by moderate-scale explosive eruptions to show the importance of the actual plume height and volcano location. At a plume height of 15 km for moderate-scale explosive eruptions, a volcano at sea level can cause stratospheric gas loading because the maximum distance to the tropopause is 15–16 km in the equatorial region (0–30°). Eruptions in the tropics have to be more powerful to inject gas into the stratosphere than eruptions at high latitudes because the tropopause rises from ca. 9–11 km at the poles to 15–16 km in the equatorial region (0–30°N and S). The equatorial region is important for stratospheric gas injection because it is the area with the highest frequency of eruptions. Gas injected into the stratosphere in equatorial areas may spread globally into both hemispheres.  相似文献   

7.
To study the deep structure of El Hierro Island, Canarian Archipelago, we have used a microseismic sounding method (MSM) based on the fact that heterogeneities of the Earth’s crust disturb the spectrum of the low-frequency microseismic field in their vicinity. So, at the Earth’s surface, the spectral amplitudes of definite frequency f above the high-velocity heterogeneities are decreasing, and above the low-velocity ones they are increasing. Moreover, the frequency f is connected with the depth of a heterogeneity H and the velocity of the fundamental mode of Rayleigh waves V R(f) through the relation H ≈ 0.4V R(f)/f. From these relations, the MSM lets us model the subsurface structure in a 3D context by inverting the amplitude-frequency spatial distribution of the microseismic field of low frequency. The validity of the method is shown through of numerical simulations and previous applications with known or verified solutions. This MSM is now used to invert the microseismic data registered in El Hierro Island. The obtained subsurface model reveals two large intrusive bodies beneath the island. Joint interpretation of microseismic and gravimetric data and their comparison with the available geological studies relate the central-eastern intrusive body to the early stage of the island formation. With respect to the western intrusive body, at the depths of 15–25 km, an area with lowest seismic velocities is identified, where we suggest that a modern magmatic reservoir is located. This reservoir could be associated with the recent submarine eruption in October 2011 and the accompanying seismic swarm, which started in July 2011. Several correlations between the shallowest structures identified by the gravity and MSM approaches are also found. Besides the numerical simulation and previous studies of this method, the correlation between gravity results, the MSM model, the geological information and the possible explanation of the features of the seismic swarm through the model obtained offer us a valid proof about the plausibility of the subsurface structures identified from MSM.  相似文献   

8.
Apoyeque volcano, located 9 km northwest of Managua city, erupted explosively at 12.4 ka. The Plinian eruption deposited a widespread pumice fall deposit known as the Upper Apoyeque Tephra (UAq). The UAq is massive, reversely graded, and consists of white juvenile pumice (~78 vol.%), a variety of cognate lithics and accidental altered lithics. The whole-rock pumice composition is rhyodacitic (SiO2?=?66.9–68.5 wt.%) with a mineral paragenesis of plagioclase, orthopyroxene, clinopyroxene, amphibole, titanomagnetite, and ilmenite in a rhyolitic glass groundmass (SiO2?=?74.4?±?0.6 wt.%). The deposit’s dispersal axis is to the south, with the deposit covering a minimum area of 877 km2 within the 50 cm isopach and has a total volume of 3 km3 (dense rock equivalent, 1.15 km3). The eruption column reached a maximum height of ca.28 km. The eruption ejected a total mass of 3?×?1012 kg at an average rate of 2?×?108 kg/s, and based on available models, we infer duration of almost 4 h. Petrographic and geochemical characteristics suggest that the eruption was triggered by magma mixing.  相似文献   

9.
After the major 1991–1993 eruption, Mt. Etna resumed flank activity in July 2001 through a complex system of eruptive fissures cutting the NE and the S flanks of the volcano and feeding effusive activity, fire fountains, Strombolian and minor phreatomagmatic explosions. Throughout the eruption, magmas with different petrography and composition were erupted. The vents higher than 2,600 m a.s.l. (hereafter Upper vents, UV) erupted porphyritic, plagioclase-rich trachybasalt, typical of present-day summit and flank activity. Differently, the vents located at 2,550 and 2,100 m a.s.l. (hereafter Lower vents, LV) produced slightly more primitive trachybasalt dominated by large clinopyroxene, olivine and uncommon minerals for Etna such as amphibole, apatite and orthopyroxene and containing siliceous and cognate xenoliths. Petrologic investigations carried out on samples collected throughout the eruption provided insights into one of the most intriguing aspects of the 2001 activity, namely the coeval occurrence of distinct magmas. We interpret this evidence as the result of a complex plumbing system. It consists in two separate magma storage systems: a shallow one feeding the activity of the UV and a deeper and more complex storage related to the activity of LV. In this deep storage zone, which is thermally and compositionally zoned, the favourable conditions allow the crystallization of amphibole and the occurrence of cognate xenoliths representing wall cumulates. Throughout 2001 eruption, UV and LV magmas remain clearly distinct and ascended following different paths, ruling out the occurrence of mixing processes between them. Furthermore, integrating the 2001 eruption in the framework of summit activity occurring since 1995, we propose that the 2001 magma feeding the vents lower than 2,600 m a.s.l. is a precursor of a refilling event, which reached its peak during the 2002–2003 Etna flank eruption.  相似文献   

10.
One of the major objectives of volcanology remains relating variations in surface monitoring signals to the magmatic processes at depth that cause these variations. We present a method that enables compositional and temporal information stored in zoning of minerals (olivine in this case) to be linked to observations of real-time degassing data. The integrated record may reveal details of the dynamics of gradual evolution of a plumbing system during eruption. We illustrate our approach using the 2006 summit eruptive episodes of Mt. Etna. We find that the history tracked by olivine crystals, and hence, most likely the magma pathways within the shallow plumbing system of Mt. Etna, differed considerably between the July and October eruptions. The compositional and temporal record preserved in the olivine zoning patterns reveal two mafic recharge events within months of each other (June and September 2006), and each of these magma supplies may have triggered the initiation of different eruptive cycles (July 14–24 and August 31–December 14). Correlation of these observations with gas monitoring data shows that the systematic rise of the CO2/SO2 gas values is associated with the gradual (pre- and syn-eruptive) supply of batches of gas-rich mafic magma into segments of Etna’s shallow plumbing system, where mixing with pre-existing and more evolved magma occurred.  相似文献   

11.
New petrological and geochemical data of upper mantle and lower crustal xenoliths from a Quaternary tephra deposit in Mýtina, Czech Republic, are discussed in the frame of previous geophysical results (receiver functions, reflection seismology) of the western Eger/Ohře Rift area. The Vogtland/NW Bohemia region is well known for intraplate earthquake swarms, which are usually associated with volcanic activity. As previously reported, 3He/4He data of CO2 emissions in mofettes and mineral-water springs point at ongoing magmatic processes in this area. Using teleseismic P receiver functions, an approximately 40-km-wide Moho updoming (from 31 to 27 km) and indications for a seismic discontinuity at 50 to 60 km depth were observed beneath the active CO2-degassing field. The studied xenolith suite probes a lithospheric profile within the structural and gas geochemical anomaly field of the western Eger Rift.With regard to texture, composition, pT estimates and origin, five xenolith groups can be discriminated. Upper crustal xenoliths (quartzites, phyllites, mica schists) resemble crystalline country rocks at surface. One noritic xenolith (6 kbar, 800 °C) could represent a sample of the lower crust. Clinopyroxenites and hornblendites probably represent cumulates of the nephelinitic magma or fragments of magmatic veins. Porous wehrlites and one hornblende peridotite xenolith reflect a metasomatied upper mantle. Megacrysts of Ti-rich amphibole, olivine, clinopyroxene, and phlogopite could be fragments of pegmatitic veins or high-pressure phenocrysts. Most of the ultramafic nodules (xenoliths and megacrysts) formed at pressures between 6 and 11 kbar (22 to 38 km depth), at temperatures well above regional geotherms of the Bohemian Massif calculated from surface heat flow studies. Orthopyroxene-bearing spinel-lherzolite xenoliths were not observed. Our petrographical, geochemical, and thermobarometric results indicate a lithospheric mantle strongly altered by magmatic processes. This metasomatism can cause slower than typical uppermost-mantle seismic velocities in a greater area and might help to explain observed seismic anomalies.  相似文献   

12.
It is noticed that few geophysical studies have been carried out to decipher the crustal structure of southwestern part of the Northeast India comprising of Tripura fold belt and Bengal basin as compared to the Shillong plateau and the Brahmaputra basin. This region has a long history of seismicity that is still continuing. We have determined first-order crustal features in terms of Moho depths (H) and average VP/VS ratios (κ) using H-κ stacking technique. The inversion of receiver functions data yields near surface thick sedimentary layer in the Bengal basin, which is nearly absent in the Shillong plateau and Tripura fold belt. Our result suggests that the crust is thicker (38–45 km) in the Tripura fold belt region with higher shear-wave velocity in the lower crust than the Shillong plateau. The distribution of VP/VS ratio indicates heterogeneity throughout the whole region. While low to medium value of Poisson’s ratio (1.69–1.75) indicates the presence of felsic crust in the Shillong plateau of the extended Indian Archean crust. The medium to high values of VP/VS ratio (> 1.780) in the Bengal basin and the Tripura fold belt region represent mafic crust during the formation of the Bengal delta and the Tripura fold belt creation in the Precambrian to the Permian age. The depth of the sediments in the Bengal basin is up to 8 km on its eastern margin, which get shallower toward its northeastern and southeastern margins.  相似文献   

13.
The greater part of Etna can be regarded as a complex strato-shield volcano constructed from the overlapping products of several centres of trachy-basaltic activity. The Valle del Bove is a horse-shoe-shaped caldera, 8 km long and 5 km wide, cut into the eastern flanks of Etna. The caldera is one of the few areas on the volcano where historic eruptions have not obscured the products of pre-historic centres of activity and these are well exposed in the cliff walls surrounding the caldera. Examination of these older volcanics provides important information on the eruptive style and internal plumbing of the Etna volcano during pre-historic times, and suggests that both were significantly different from the present day.Much of the southern wall of the Valle del Bove represents a surviving portion of the Trifoglietto II volcano, the largest pre-historic centre of activity. A stratigraphy is constructed for the southern wall, the Trifoglietto II lavas and pyroclastics rest unconformably upon the eroded remnants of an older centre, and are themselves overlain by the products of younger centres. All the lavas exposed in the southern wall are of alkalic affinity and comprise a trachybasaltic suite ranging from hawaiite to benmoreite. Variation in the chemistry of the lavas can be explained by their differentiation at high levels in the crust from a more basic magma of alkali olivine-basalt/hawaiite composition. An anomalous trend in the TiO2 content of the Trifoglietto II lavas may be explained by the fractionation of kaersutite (Ti-rich amphibole).A study has been made of the numerous dykes exposed in the walls of the Valle del Bove, the alignments of which parallel trends which are important on Etna at the present time.It is proposed that the initial opening of the Valle del Bove occurred sometime between 20,000 and 10,000 y. B.P., as a result of a phreatic or phreato-magmatic explosion near the base of the eastern flank of Trifoglietto II. This is visualised as triggering a slope failure and resulting in the destruction of much of the centre by a catastrophic landslide. This mechanism has much in common with the explosive eruptions which produced both the Bandai-san (Japan) caldera in 1888, and the Mount St Helens caldera in May, 1980.  相似文献   

14.
In this paper we search for a reference relation between seismic P-wave velocity V and density ρ ref for the continental crust. Based on the results of modern seismic experiments, we compiled 2-D seismic models into a network of four, each about 1100–1400 km long, continental-scale seismic transects cutting all main tectonic units in Central Europe. The Moho depth (about 52 km beneath the TESZ in SE Poland, to about 25 km beneath the Pannonian Basin) and the crustal structure of this area are characterised by a large variation. This structural variation provides an interesting basis for gravity studies and especially for analysing the difference of the density structure between two major tectonic provinces of distinctive age difference: Precambrian and Phanerozoic. The 2-D gravity modelling applied for crustal cross-sections representing the regional structure, based on a unified gravity anomaly map of the area, allows for a stable determination of some general features of the regional reference velocity-density relation for the continental crust. In general three major seismo-petrological types of rocks can be distinguished: sediments, crystalline crust and mantle. In compacted sediments the reference velocity-density relation is well described by the Gardner or Nafe-Drake model. Calculated gravity anomalies, using unified velocity-density relation for the whole crystalline crust, well describe observed anomalies, with an average difference of 14 mGal. However, calculated gravity anomalies, using separated velocity-density relations for the crystalline crust of Precambrian and Phanerozoic Europe, describe observed anomalies better than for the entire crust, with an average difference 12 mGal. The most important feature of these relations is the large differentiation of the derivative dρ ref /dV in the crystalline crust, being about 0.3 g s/m4 for Precambrian, and about 0.1 g s/m4 for the Phanerozoic crystalline crust. The modelling suggests a very small density value in the uppermost mantle ρ = 3.11 g/cm3 below the younger area, while for the older area it is ρ = 3.3 g/cm3.  相似文献   

15.
A careful examination of historical documents pertaining to the long (over three thousand years) history of Mount Etna has been carried out. Despite the abundance of details on eruptions, sometimes very ancient (e.g. that of 479/8 B.C. described by PINDAR), it is shown that the reports are often too imprecise for identifying with certainty the type of eruptive activity and the spatial extension of lava flows — or even the lava flows and eruptive centres themselves —, many of these having been buried by subsequent volcanic activity. Conversely, it can be shown that well preserved cones and flows were apparently produced by eruptions that went unoticed by historians. These considerations are supported by previous paleomagnetic work : lava flows and eruptive systems taken as belonging to eruptions of the years 1651 (Scorciavacca), 1595 (Gallo Bianco), 1566 (Linguaglossa), 1536 (Mt Pomiciaro NW, and a small flow W of Mt Vetore), 1494 (Mt Frumento Supino), 1408 (Trecastagni), 1381 (N of Catania), 1329 (Linera, Mt Ilice), 1284 (N of Zafferana), 1169 or 812 (Mt Sona) ..., have paleomagnetic directions inconsistent with that of the geomagnetic field at these respective dates. The reinterpretation of ancient documents by recent authors is often misleading, and some major errors have been corrected. Obviously, many gaps or uncertainties remain in the summary of eruptive sequences, except perhaps for the last two or three centuries. Eruptive models that are based on the use of historical documents should be examined in the view of these uncertainties with great care.  相似文献   

16.
Crustal deformation by the M w 9.0 megathrust Tohoku earthquake causes the extension over a wide region of the Japanese mainland. In addition, a triggered M w 5.9 East Shizuoka earthquake on March 15 occurred beneath the south flank, just above the magma system of Mount Fuji. To access whether these earthquakes might trigger the eruption, we calculated the stress and pressure changes below Mount Fuji. Among the three plausible mechanisms of earthquake–volcano interactions, we calculate the static stress change around volcano using finite element method, based on the seismic fault models of Tohoku and East Shizuoka earthquakes. Both Japanese mainland and Mount Fuji region are modeled by seismic tomography result, and the topographic effect is also included. The differential stress given to Mount Fuji magma reservoir, which is assumed to be located to be in the hypocentral area of deep long period earthquakes at the depth of 15 km, is estimated to be the order of about 0.001–0.01 and 0.1–1 MPa at the boundary region between magma reservoir and surrounding medium. This pressure change is about 0.2 % of the lithostatic pressure (367.5 MPa at 15 km depth), but is enough to trigger an eruptions in case the magma is ready to erupt. For Mount Fuji, there is no evidence so far that these earthquakes and crustal deformations did reactivate the volcano, considering the seismicity of deep long period earthquakes.  相似文献   

17.
Seismic data from the MVT-SLN sesmic station located 7 km from the summit area of Mt Etna volcano, which has been operating steadily for the last two decades, have been analysed together with the volcanic activity during the same period. Cross-correlation techniques are used to investigate possible relationships between seismic and volcanic data and to evaluate the statistical significance of the results. A number of significant correlations have been identified, showing that there is an evident relation between seismic events and flank eruptions, and a less clear relation with summit activity, which appears more linked to tremor rather than to the low-frequency events. Particularly interesting are the low-frequency events whose rate of occurrence increases, starting from 17 to 108 days, prior to the onset of the flank activity and are candidates for a useful precursor. On the other hand, a tendency towards the increase in both the duration and the occurrence rate of transients in the volcanic tremor was observed before the onset of summit eruptions. As a result of this study different stages in the volcanic activity of Mt Etna, represented by changes in the characteristics of the recorded seismic phenomena, are identified.  相似文献   

18.
The Southeast Crater (SEC) of Mt. Etna, Italy, is renowned for its high activity, mainly long-lived eruptions consisting of sequences of individual paroxysmal episodes which have produced more than 150 eruptive events since 1998. Each episode typically forms eruption columns followed by tephra fallout over distances of up to about 100 km from the vent. One of the last sequences consisted of 25 lava fountaining events, which took place between January 2011 and April 2012 from a pit-vent on the eastern flank of the SEC and built a new scoria cone renamed New Southeast Crater. The first episode on 12–13 January 2011 produced tephra fallout which was unusually dispersed toward to the South extending out over the Mediterranean Sea. The southerly deposition of tephra permitted an extensive survey at distances between ~1 and ~100 km, providing an excellent characterization of the tephra deposit. Here, we document the stratigraphy of the 12–13 January fallout deposit, draw its dispersal, and reconstruct its isopleth map. These data are then used to estimate the main eruption source parameters. The total erupted mass (TEM) was calculated by using four different methodologies which give a mean value of 1.5?±?0.4?×?108 kg. The mass eruption rate (MER) is 2.5?±?0.7?×?104 kg/s using eruption duration of 100 min. The total grain-size (TGS) distribution, peaked at ?3 phi, ranges between ?5 and 5 phi and has a median value of ?1.4 phi. Further, for the eruption column height, we obtained respective values of 6.8–13.8 km by using the method of Carey and Sparks (1986) and 3.4?±?0.3 km by using the methods of Wilson and Walker (1987), Mastin et al. (2009), and Pistolesi et al. (2011) and considering the mean value of MER from the deposit. We also evaluated the uncertainty and reliability of TEM and TGS for scenarios where the proximal and distal samples are not obtainable. This is achieved by only using a sector spanning the downwind distances between 6 and 23 km. This scenario is typical for Etna when the tephra plume is dispersed eastward, i.e., in the prevailing wind direction. Our results show that, if the analyzed deposit has poorer sample coverage than presented in this study, the TEM (3.4?×?107 kg) is 22 % than the TEM obtained from the whole deposit. The lack of the proximal (<6 km) deposit may cause more significant differences in the TGS estimations.  相似文献   

19.
 An estimated average CO2 output from Etna's summit craters in the range of 13±3 Mt/a has recently been determined from the measured SO2 output and measured CO2/SO2 molar ratios. To this amount the CO2 output emitted diffusely from the soil (≈ 1 Mt/a) and the amount of CO2 dissolved in Etna's aquifers (≈ 0.25 Mt/a) must be added. Data on the solubility of CO2 in Etnean magmas at high temperature and pressure allow the volume of magma involved in the release of such an amount of this gas to be estimated. This volume of magma (≈ 0.7 km3/a) is approximately 20 times greater than the volume of magma erupted annually during the period 1971–1995. On the basis of C-isotopic data of CO2 collected in the Etna area and of new hypotheses on the source of Mediterranean magmas, significant contributions of CO2 from non-magmatic sources to the total output from Etna are unlikely. Such large outputs of CO2 and also of SO2 from Etna could be due to an anomalously shallow asthenosphere beneath the volcano that allows a continuous escape of gases toward the surface, even without migration of magma. Received: 7 August 1996 / Accepted: 9 November 1996  相似文献   

20.
A method for mapping lava-flow hazard on the SE flank of Mt. Etna (Sicily, Southern Italy) by applying the Cellular Automata model SCIARA-fv is described, together with employed techniques of calibration and validation through a parallel Genetic Algorithm. The study area is partly urbanised; it has repeatedly been affected by lava flows from flank eruptions in historical time, and shows evidence of a dominant SSE-trending fracture system. Moreover, a dormant deep-seated gravitational deformation, associated with a larger volcano-tectonic phenomenon, affects the whole south-eastern flank of the volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号