首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C.Z. Wang  G.X. Wu 《Ocean Engineering》2008,35(8-9):717-726
A time-domain method is employed to analyse the resonant oscillations of the liquid confined within the two floating bodies. The velocity potentials at each time step are obtained through a finite-element method (FEM) with quadratic shape functions. The matrix equation of the FEM is solved through an iteration. The radiation condition is satisfied through a combination of the damping zone method and the Sommerfeld–Orlanski equation. A detailed analysis is made for two rectangular floating cylinders undergoing forced oscillation. The first-order potential reveals the resonant behaviour of the wave motion at certain frequencies ωi, which is similar to sloshing in a tank. More interestingly, the second-order theory further reveals that when the oscillation frequency is at ωi/2 or half of the resonant frequency, no first-order resonance is observed as expected, but the second-order resonant motion becomes evident, which does not seem to have been extensively investigated so far. Detailed results for two rectangular cylinders are provided to show some insights into the resonant effect due to the interaction between the bodies. The first- and second-order resonant phenomena have been observed and the result has shown that the second-order components have significant influence on the wave and force in some cases, especially at the second-order resonance.  相似文献   

2.
A time-domain simulation method based on potential flow model has been developed to investigate the berthing problem between two floating bodies in wave. The boundary value problem is formulated with respect to an earth-fixed coordinate system because the relative positions of the two vessels continuously change during the berthing operation. The classical finite element method is used to solve the Laplace equation in the fluid domain with moving boundary. The linearized free-surface boundary conditions are integrated in time by applying 4th-order Adams–Bashforth–Moulton method. A simple re-mesh algorithm with local and global mesh systems is introduced to update mesh by considering large horizontal movement of the berthing vessel. The developed numerical method is used to investigate the berthing problem between a FPSO and shuttle tanker in waves. The focus is on the wave-induced motion response during the berthing process. The characteristics of the motion responses in berthing operation are examined with various wave frequencies, berthing speeds and wave headings.  相似文献   

3.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

4.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

5.
A fast time-domain method is developed in this paper for the real-time prediction of the six degree of freedom motions of a vessel traveling in an irregular seaway in infinitely deep water. The fully coupled unsteady ship motion problem is solved by time-stepping the linearized boundary conditions on both the free surface and body surface. A velocity-based boundary integral method is then used to solve the Laplace equation at every time step for the fluid kinematics, while a scalar integral equation is solved for the total fluid pressure. The boundary integral equations are applied to both the physical fluid domain outside the body and a fictitious fluid region inside the body, enabling use of the fast Fourier transform method to evaluate the free surface integrals. The computational efficiency of the scheme is further improved through use of the method of images to eliminate source singularities on the free surface while retaining vortex/dipole singularities that decay more rapidly in space. The resulting numerical algorithm runs 2–3 times faster than real time on a standard desktop computer. Numerical predictions are compared to prior published results for the transient motions of a hemisphere and laboratory measurements of the motions of a free running vessel in oblique waves with good agreement.  相似文献   

6.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

7.
驳船横荡运动下海洋立管的动力响应   总被引:1,自引:0,他引:1  
海洋浮式生产系统下立管的受力情况复杂,国内的研究大多集中于两端固支或简支的情况。本文则以水面驳船的横荡运动作为立管上端的动力边界条件,将Matteo Luca Facchinetti的尾流振子模型与考虑外流涡激振动作用下海洋立管运动微分方程相结合,得到管道与流体的耦合振动方程,用Hermit插值函数将方程进行有限元离散,并用Newmark时程分析法及迭代法求解,得到管道各点的位移时程曲线。结果表明:立管的振动频率主要由上端驳船的运动频率所确定,随着驳船运动频率的增加,立管中点的位移幅值先增加后减小;在有动边界存在的条件下,改变外流流速对立管中点的位移幅值影响不大。  相似文献   

8.
本文给出点源二维各向导性地电断面的直流电场有限元解法。首先,用付氏变换将点源二维各向异性地电断面的三维边值问题转变成二维边值问题;然后导出与二维边值问题相应的变分方程;最后用有限元法解变分方程并用付氏反变换,就获得三维空间中的电位 本文用此方法给出二个算例,并与解析解进行对比。  相似文献   

9.
This paper analyses nonlinear dynamics of cable towed body system. The cable has been modeled and analyzed using a new nodal position finite element method, which calculates the position of the cable directly instead of the displacement by the existing finite element method. The newly derived nodal position finite element method eliminates the need of decoupling the rigid body motion from the total motion, where numerical errors arise in the existing nonlinear finite element method, and the limitation of small rotation in each time step in the existing nonlinear finite element method. The towed body is modeled as a rigid body with six degrees of freedom while the tow ship motion is treated as a moving boundary to the system. A special procedure has been developed to couple the cable element with the towed body. The current approach can be used as design tool for achieving improved directional stability, maneuverability, safety and control characteristics with the cable towed body. The analysis results show the elegance and robustness of the proposed approach by comparing with the sea trial data.  相似文献   

10.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

11.
港口中系泊船在波浪作用下运动问题的本质是浅水波浪与浮体的相互作用。与深水情况不同,浅水问题应当考虑水底、水域边界的影响及浅水波浪自身的特性,单一模型很难实现该模拟过程。为此,建立了Boussinesq方程计算入射波和Laplace方程计算散射波的全时域组合计算模型。有限元法求解的Boussinesq方程能使入射波充分考虑到水底、水域边界的影响和浅水波浪的特性;散射波被线性化,采用边界元法求解,并以浮体运动时的物面条件为入射波和散射波求解的匹配条件。该方法为完全的时域方法,计算网格不随时间变动,计算过程较为方便。通过与实验及其他数值方法的结果进行比较,验证了本模型对非线性波面、浮体的运动都有比较理想的计算结果,显示了本模型对非线性问题具有较好的计算能力。  相似文献   

12.
This paper investigates the characteristics of bending moments, shear forces and stresses at unit connections of very large floating structures (VLFS) under wave loads. The responses of VLFS are calculated by solving multi-body motion equation considering hydroelasticity and connection stiffness. Hydroelastic responses are calculated by the direct method. Higher-order boundary element method (HOBEM) is used for fluid analysis and finite element method (FEM) is introduced for structural analysis. The equation of motion is modified to describe the unit connections by employing spring elements. Bending moments and shear forces at the connections are obtained from the dynamic equilibrium condition for pressures and inertia forces. Two types of VLFS units such as tandem arranged units and side-by-side arranged units are considered in the numerical examples. The influences of connection stiffness, wave frequency and heading angle on responses of VLFS are investigated through the numerical examples. Rigid body analysis along with hydroelastic analysis is also carried out in the numerical analysis and comparison of those two approaches is discussed.  相似文献   

13.
In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite element method (SBFEM), which is a novel semi-analytical method with the advantages of combining the finite element method (FEM) with the boundary element method (BEM). The whole solution domain is divided into one unbounded sub-domain and one bounded sub-domain by the exterior cylinder. By weakening the governing differential equation in the circumferential direction, the SBFEM equations for both domains can be solved analytically in the radial direction. Only the boundary on the circumference of the exterior porous cylinder is discretized with curved surface finite elements. Meanwhile, by introducing a variable porous-effect parameter G, non-homogeneous materials caused by the complex configuration of the exterior cylinder are modeled without additional efforts. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. The effects of the wide range wave parameters and the structure configuration are examined. This parametric study will help determine the various hydrodynamic effects of the concentric porous cylindrical structure.  相似文献   

14.
In this study, we develop a numerical method for a 3D linear hydroelastic analysis of floating structures with liquid tanks subjected to surface regular water waves and compare the numerical results with experimental tests. Considering direct couplings among structural motion, sloshing, and water waves, a mathematical formulation and a numerical method extended from a recent work [1] are developed. The finite element method is employed for the floating structure and internal fluid in tanks, and the boundary element method is used for the external fluid. The resulting formulation completely incorporates all the interaction terms including hydrostatic stiffness and the irregular frequency effect is removed by introducing the extended boundary integral equations. Through various numerical tests, we verify the proposed numerical method. We also performed 3D hydroelastic experimental tests of a floating production unit (FPU) model in an ocean basin. The measured dynamic motions are compared with the numerical results obtained using the proposed method.  相似文献   

15.
In this work, transient resonant motions excited in linearised scattering interactions are approximated using a simple damped harmonic oscillator model. The scattering interactions considered involve the diffraction of an incident wave-train with a dominant regular time-harmonic component by structures which enclose a portion of the free surface. Provided a single resonant mode only is excited significantly, the fluid oscillation in the vicinity of the structure will primarily be composed of the resonant mode and incident wave mode contributions. The forced damped harmonic oscillator equation is used to predict the fluid motion and, in particular, the elevation of the internal free surface. The predictions are compared to the results from a numerical time-domain solver based on the linearised water-wave equations. It is shown that, given a good estimate of the location of the resonance in the complex frequency plane and a priori knowledge of the form of the incident wave, the model can successfully predict the time-dependent behaviour of the motion. Both two- and three-dimensional scattering problems are considered with a variety of scatterers in each case.  相似文献   

16.
-Wave refraction-diffraction due to a large ocean structure and topography in the presence of a 'current are studied numerically. The mathematical model is the mild-slope equation developed by Kirby (1984). This equation is solved using a finite and boundary element method. The physical domain is devid-ed into two regions: a slowly varying topography region and a constant water depth region. For waves propagating in the constant water depth region, without current interfering, the mild- slope equation is then reduced to the Helmholtz equation which is solved by boundary element method. In varying topography region, this equation will be solved by finite element method. Conservation of mass and energy flux of the fluid between these two regions is required for composition of these two numerical methods. The numerical scheme proposed here is capable of dealing with water wave problems of different water depths with the main characters of these two methods.  相似文献   

17.
The boundary layer is very important in the relation between wave motion and bed stress, such as sediment transport. It is a known fact that bed stress behavior is highly influenced by the boundary layer beneath the waves. Specifically, the boundary layer underneath wave runup is difficult to assess and thus, it has not yet been widely discussed, although its importance is significant. In this study, the shallow water equation (SWE) prediction of wave motion is improved by being coupled with the kω model, as opposed to the conventional empirical method, to approximate bed stress. Subsequently, the First Order Center Scheme and Monotonic Upstream Scheme of Conservation Laws (FORCE MUSCL), which is a finite volume shock-capturing scheme, is applied to extend the SWE range for breaking wave simulation. The proposed simultaneous coupling method (SCM) assumes the depth-averaged velocity from the SWE is equivalent to free stream velocity. In turn, free stream velocity is used to calculate a pressure gradient, which is then used by the kω model to approximate bed stress. Finally, this approximation is applied to the momentum equation in the SWE. Two experimental cases will be used to verify the SCM by comparing runup height, surface fluctuation, bed stress, and turbulent intensity values. The SCM shows good comparison to experimental data for all before-mentioned parameters. Further analysis shows that the wave Reynolds number increases as the wave propagates and that the turbulence behavior in the boundary layer gradually changes, such as the increase of turbulent intensity.  相似文献   

18.
Limit loads for ship structure components are determined in this paper based on a single linear elastic finite element analysis by invoking the concept of kinematically active reference volume in conjunction with the mα-tangent method. The method enables rapid determination of lower bound limit loads for ship structure components by taking their kinematically inactive volume into consideration. This method is applied to a number of ship structure components possessing different percentages of inactive volume. Results are compared with the corresponding inelastic finite element results, and available analytical solutions.  相似文献   

19.
The hydrodynamic problem of a hydrofoil travelling at constant speed in water waves has been investigated through velocity potential theory. The boundary conditions on the free surface have been linearized, and the effects are accounted for through the Green function. The overall problem is decomposed into the steady forward speed problem and periodic wave radiation and diffraction problems. Each of these problems is solved using the boundary integral equation over the hydrofoil surface together with a vortex sheet behind the trailing edge. The body surface boundary condition is imposed on its mean position. As a result the steady potential will contribute a well-known mj term to the body surface boundary condition on the radiation problem. The numerical difficulty in dealing with this term is effectively resolved through a difference method. The effects of the thickness on the wave radiation and diffraction are investigated. The applicability of various reciprocity relationships in this problem is discussed.  相似文献   

20.
A two-dimensional finite wedge entering water obliquely in freefall with three degrees of freedom is considered through the velocity potential theory for the incompressible liquid. The problem is solved by using the boundary element method in the time domain. The scheme of the stretched coordinate system is adopted at the initial stages when only a small part of the wedge near its tip has entered water. The auxiliary function method is adopted to decouple the nonlinear mutual dependence between the body motions in three degrees of freedom and the fluid flow. When the liquid has detached from the knuckle of the wedge, the free jet is treated through the momentum equation. The developed method is verified through existing results for one degree of freedom in vertical motion. Various case studies are undertaken for a wedge entering water vertically, obliquely and with rotational angles. Results are provided the accelerations, velocities, pressure distribution and free surface deformation, and the physical implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号