共查询到20条相似文献,搜索用时 0 毫秒
1.
We show that the amplitude of the Global Positioning System (GPS) signals in the radio occultation (RO) experiments is an indicator of the activity of the gravity waves (GW) in the atmosphere. The amplitude of the GPS RO signals is more sensitive to the atmospheric wave structures than is the phase. Early investigations used only the phase of the GPS occultation signals for statistical investigation of the GW activity in the height interval 10–40 km on a global scale. In this study, we use the polarization equations and Hilbert transform to find the 1-D GW radio image in the atmosphere by analyzing the amplitude of the RO signal. The radio image, also called the GW portrait, consists of the phase and amplitude of the GW as functions of height. We demonstrate the potential of this method using the amplitude data from GPS/Meteorology (GPS/MET) and satellite mission Challenge Mini-satellite Payload (CHAMP) RO events. The GW activity is nonuniformly distributed with the main contribution associated with the tropopause and the secondary maximums related to the GW breaking regions. Using our method we find the vertical profiles of the horizontal wind perturbations and its vertical gradient associated with the GW influence. The estimated values of the horizontal wind perturbations are in fairly good agreement with radiosonde data. The horizontal wind perturbations v(h) are ±1 to ±5 m s with vertical gradients dv/dh ±0.5 to ±15 m s km at height 10–40 km. The height dependence of the GW vertical wavelength was inferred through the differentiation of the GW phase. Analysis of this dependence using the dispersion relationship for the GW gives the estimation of the projection of the horizontal background wind velocity on the direction of the GW propagation. For the event considered, the magnitude of this projection changes between 1.5 and 10 m s at heights of 10–40 km. We conclude that the amplitude of the GPS occultation signals contain important information about the wave processes in the atmosphere on a global scale. 相似文献
2.
A new method to mitigate multipath error in single-frequency GPS receiver with wavelet transform 总被引:1,自引:1,他引:1
One of the major errors in high-precision GPS positioning is multipath. Multipath effect modeling and reduction have been a challenging issue in high-accuracy GPS positioning applications due to its special properties. Different methods have been employed to mitigate this error including hardware and software approaches. We reduce C/A code multipath error by adopting an efficient software method which uses wavelet transform as a basic data processing trend. The key idea of the proposed method is using stationary wavelet transform (SWT) in GPS signal data processing. Since we have used SWT, there is complete access to high-frequency and low-frequency terms in both time and frequency domains, and we can apply appropriated procedures to mitigate this error. The multipath error mostly is a low-frequency term. In our proposed method, the double difference (DD) residuals are applied to the SWT to identify the multipath disturbance. The extracted multipath is then used to correct DD observations. Our experiments include three data sets to investigate the proposed method and compare it with existing algorithms. We used simulations for two of these data sets. The results indicate the efficiency of the proposed method over existing algorithms. 相似文献
3.
4.
Xavier Collilieux Laurent Métivier Zuheir Altamimi Tonie van Dam Jim Ray 《GPS Solutions》2011,15(3):219-231
The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF)
by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to
the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers
(ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale,
station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame
(TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although
the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think
that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite
and ground antenna phase center variations. The new position time series also show a better repeatability compared to past
IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS
station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed
solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some
of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes. 相似文献
5.
6.
本文给出了GPS/GLONASS双模接收机的总体设计方案,重点对弱信号环境下的接收机信号捕获进行了讨论,采用并行码相位搜索方法和改进的循环相关算法分别对GLONASS信号和GPS信号进行捕获;并利用真实数据对双模接收机性能进行了仿真研究,重点对接收机捕获弱信号的能力,以及在不同信噪比和不同累加数据长度下的捕获概率进行了讨论,结果表明该双模接收机在不需要较长数据长度的情况下能够捕获低信噪比环境下的卫星导航信号,提高了接收机的灵敏度。 相似文献
7.
Ayman F. Habib Ana Paula Kersting Ki-In Bang Ruifang Zhai Mohannad Al-Durgham 《The Photogrammetric Record》2009,24(126):171-195
Lidar (laser scanning) technology has been proven as a prominent technique for the acquisition of high-density and accurate topographic information. Because of systematic errors in the lidar measurements (drifts in the position and orientation information and biases in the mirror angles and ranges) and/or in the parameters relating the system components (mounting parameters), adjacent lidar strips may exhibit discrepancies. Although position and orientation drifts can have a more significant impact, these errors and their impact do not come as a surprise if the quality of the GPS/INS integration process is carefully examined. Therefore, the mounting errors are singled out in this work. The ideal solution for improving the compatibility of neighbouring strips in the presence of errors in the mounting parameters is the implementation of a rigorous calibration procedure. However, such a calibration requires the original observations, which may not be usually available. In this paper, a strip adjustment procedure to improve the compatibility between parallel lidar strips with moderate flight dynamics (for example, acquired by a fixed-wing aircraft) over an area with moderately varying elevation is proposed. The proposed method is similar to the photogrammetric block adjustment of independent models. Instead of point features, planar patches and linear features, which are represented by sets of non-conjugate points, are used for the strip adjustment. The feasibility and the performance of the proposed procedure together with its impact on subsequent activities are illustrated using experimental results from real data. 相似文献
8.
Very high-rate global positioning system (GPS) data has the capacity to quickly resolve seismically related ground displacements, thereby providing great potential for rapidly determining the magnitude and the nature of an earthquake’s rupture process and for providing timely warnings for earthquakes and tsunamis. The GPS variometric approach can measure ground displacements with comparable precision to relative positioning and precise point positioning (PPP) within a short period of time. The variometric approach is based on single-differencing over time of carrier phase observations using only the broadcast ephemeris and a single receiver to estimate velocities, which are then integrated to derive displacements. We evaluate the performance of the variometric approach to measure displacements using 50 Hz GPS data, which were recorded during the 2013 MW 6.6 Lushan earthquake and the 2011 MW 9.0 Tohoku-Oki earthquake. The comparison between 50 and 1 Hz seismic displacements demonstrates that 1 Hz solutions often fail to faithfully manifest the seismic waves containing high-frequency seismic signals due to aliasing, which is common for near-field stations of a moderate-magnitude earthquake. Results indicate that 10–50 Hz sampling GPS sites deployed close to the source or the ruptured fault are needed for measuring dynamic seismic displacements of moderate-magnitude events. Comparisons with post-processed PPP results reveal that the variometric approach can determine seismic displacements with accuracies of 0.3–4.1, 0.5–2.3 and 0.8–6.8 cm in the east, north and up components, respectively. Moreover, the power spectral density analysis demonstrates that high-frequency noises of seismic displacements, derived using the variometric approach, are smaller than those of PPP-derived displacements in these three components. 相似文献
9.
10.
Huaizu You Garrison J.L. Heckler G. Smajlovic D. 《Geoscience and Remote Sensing Letters, IEEE》2006,3(1):78-82
A "waveform" is generated by cross-correlating local copies of a global positioning system (GPS) signal with an ocean-reflected GPS signal, over a range of carrier frequencies and code delays. The shape of this waveform can be inverted to obtain estimates of the ocean surface roughness. To assess the accuracy of these retrievals, a stochastic model for the waveform time series measurements was developed in a previous publication. In this letter, this model is validated by comparing the predicted autocorrelation function of the waveform against the autocorrelation computed from experimental waveforms collected from an airborne receiver. A 1-ms coherent integration time was used at first. Then, blocks of these measurements were concatenated to produce equivalent integration times of up to 5 ms to compare the dependence of model predictions on integration time. Correlation time was estimated by fitting a model Gaussian function to the magnitude or the real part of the autocorrelation function. The magnitude and phase of the complex autocorrelation function from the model were also studied to show the location of the first , and better explain cases in which the Gaussian function did not fit well. The autocorrelation is found to be weakly dependent upon the surface roughness, over a range of moderate wind speeds. 相似文献
11.
This paper describes the ocean loading tides corrections of GPS stations in Antarctica, such as the Great Wall station and Zhongshan station. Based on the theory of ocean loading tides, the displacement corrections of ocean loading tides on GPS stations in Antarctica are calculated by using the CRS4.0 ocean loading tides model. These corrections are also applied to GPS data processing. The GPS data are analyzed by the GAMIT software with and without these corrections. We compared and analyzed the GPS baseline components to get the differences. The results show that the ocean tidal displacement corrections have obvious effects upon GPS baseline components. Therefore, we should not ignore the ocean loading tides corrections of GPS stations in Antarctica to obtain precise and reliable results. 相似文献
12.
The Center for Orbit Determination in Europe (CODE) has been involved in the processing of combined GPS/GLONASS data during the International GLONASS Experiment (IGEX). The resulting precise orbits were analyzed using the program SORBDT. Introducing one satellites positions as pseudo-observations, the program is capable of fitting orbital arcs through these positions using an orbit improvement procedure based on the numerical integration of the satellites orbit and its partial derivative with respect to the orbit parameters. For this study, the program was enhanced to estimate selected parameters of the Earths gravity field. The orbital periods of the GPS satellites are —in contrast to those of the GLONASS satellites – 2:1 commensurable (P
Sid:P
GPS) with the rotation period of the Earth. Therefore, resonance effects of the satellite motion with terms of the geopotential occur and they influence the estimation of these parameters. A sensitivity study of the GPS and GLONASS orbits with respect to the geopotential coefficients reveals that the correlations between different geopotential coefficients and the correlations of geopotential coefficients with other orbit parameters, in particular with solar radiation pressure parameters, are the crucial issues in this context. The estimation of the resonant geopotential terms is, in the case of GPS, hindered by correlations with the simultaneously estimated radiation pressure parameters. In the GLONASS case, arc lengths of several days allow the decorrelation of the two parameter types. The formal errors of the estimates based on the GLONASS orbits are a factor of 5 to 10 smaller for all resonant terms.
AcknowledgmentsThe authors would like to thank all the organizations involved in the IGS and the IGEX campaign, in particular those operating an IGS or IGEX observation site and providing the indispensable data for precise orbit determination. 相似文献
13.
机载GPS反射信号土壤湿度测量技术 总被引:8,自引:2,他引:8
随着全球导航定位系统反射信号(GNSS-R)技术的发展, 近年来提出了利用GPS地表反射信号遥感土壤湿度的新方法, 该方法利用地表反射率与土壤介电常数以及介电常数与土壤湿度之间的关系来建立反演模型。为了可以快速方便的利用DMR实测数据反演得到土壤湿度, 本文根据Wang和Schmugge模型建立了土壤介电常数与湿度之间的分段模型, 实现了从原始反射数据到土壤湿度结果的整个反演流程。为了验证反演的可行性, 利用NASA等机构联合进行的SMEX02试验机载数据反演得到的结果表明, GPS反射信号能够有效地反演 相似文献
14.
本文分析了GPS现代化信号L5载波的结构及相对于非现代化信号的改进,比较了GPS L5载波和WAAS L5载波的区别;比较了2颗现代化卫星SVN49和SVN62播发的L5载波的信号结构及信噪比,结果表明:SVN49播发的L5载波演示信号的抗干扰能力较差,而SVN62播发的L5载波具有更强的抗干扰能力,满足设计规范要求. 相似文献
15.
A. G. Pavelyev J. Wickert Y. A. Liou Ch. Reigber T. Schmidt K. Igarashi A. A. Pavelyev S. S. Matyugov 《GPS Solutions》2005,9(2):96-104
A local mechanism for strong ionospheric effects on radio occultation (RO) global positioning satellite system (GPS) signals is described. Peculiar zones centered at the critical points (the tangent points) in the ionosphere, where the gradient of the electron density is perpendicular to the RO ray trajectory, strongly influence the amplitude and phase of RO signals. It follows from the analytical model of local ionospheric effects that the positions of the critical points depend on the RO geometry and the structure of the ionospheric disturbances. Centers of strong ionospheric influence on RO signals can exist, for example, in the sporadic E-layers, which are inclined by 3–6° relative to the local horizontal direction. Also, intense F2 layer irregularities can contribute to the RO signal variations. A classification of the ionospheric influence on the GPS RO signals is introduced using the amplitude data, which indicates different mechanisms (local, diffraction, etc.) for radio waves propagation. The existence of regular mechanisms (e.g., local mechanism) indicates a potential for separating the regular and random parts in the ionospheric influence on the RO signals. 相似文献
16.
Improved method for estimating the inter-frequency satellite clock bias of triple-frequency GPS 总被引:1,自引:0,他引:1
Considering the contribution of the hardware biases to the estimated clock errors, an improved method for estimating the satellite inter-frequency clock bias (IFCB) is presented, i.e., the difference in the satellite clock error as computed from ionospheric-free pseudorange and carrier phase observations using L1/L2 and P1/P2 versus L1/L5 and P1/P5. The IFCB is composed of a constant and a variable part. The constant part is the inter-frequency hardware bias (IFHB). It contains the satellite and receiver hardware delays and can be expressed as a function of the DCBs [DCB (P1 ? P2) and DCB (P1 ? P5)]. When a reference satellite is selected, the satellite IFHB can be computed but is biased by a reference satellite IFHB. This bias will not affect the utilization of IFCB in positioning since it can be absorbed by the receiver clock error. Triple-frequency observations of 30 IGS stations between June 1, 2013, and May 31, 2014, were processed to show the variations of the IFHB. The IFHB values show a long-term variation with time. When a linear and a fourth-order harmonic function are used to model the estimated IFCB, which contains contributions of the hardware delays and clock errors, the results show that 89 % of the IFCB can be corrected given the current five triple-frequency GPS satellites with the averaged fitting RMS of 1.35 cm. Five days of data are processed to test the estimated satellite clock errors using the strategy presented. The residuals of P1/P5 and L1/L5 have a STD of <0.27 m and 0.97 cm, respectively. In addition, most predicted satellite IFCBs reach an accuracy of centimeter level and its mean accuracy of 5 days is better than 7 cm. 相似文献
17.
Considering a GPS satellite and two terrestrial stations, two types of equations are derived relating the heights of the
two stations to the measured data (frequency ratio or clock rate differences) and the coordinates and velocity components
of all three participating objects. The potential possibilities of using such relations for the determination of heights (in
terms of geopotential numbers or orthometric heights) are discussed.
Received: 6 December 2000 / Accepted: 9 July 2001 相似文献
18.
基于GPS、GRACE以及GLDAS 3种数据从均方根、相关性、周年振幅和相位4个方面对陕西省22个GPS基准站的垂直负荷形变进行定量分析和研究,结果表明:陕西省GPS垂向形变时间序列中,陆地水负荷形变并不明显,其中GRACE的贡献值为11.7%,GLDAS的贡献值为11.0%;GPS与GRACE以及GPS与GLDAS的相关系数大于等于0.5的站点比例分别是63%和77%;对于振幅而言,GPS的振幅最大,GRACE的振幅其次,GLDAS的振幅最小。文中研究陕西省陆地水负荷形变的量值和特征,为获取更高精度的构造形变提供依据。 相似文献
19.
The nearly nine-year continuous GPS data collected since 1 March 1999 from the Crustal Motion Observation Network of China(CMONOC) were consistently analyzed.Most of the nonlinear movements in the cumulative position time series pro-duced by CMONOC data center disappeared;and more accurate vertical terms and tectonic signals were extracted.Displacements caused by atmospheric pressure loading,nontidal ocean loading,soil moisture mass loading,and snow cover mass loading using the National Centers for Environmental Prediction(NCEP) Reanalysis I/II models and Estimation of the Circulation and Climate of the Ocean(ECCO) data can explain most of the vertical annual terms at many stations,while only parts can be explained at Lhasa and southern coastal sites,indicating that there are some deformation mechanisms that are still unknown or not modeled accurately.The remarkable differences in vertical position time series for short-baseline sites reveal that GPS stations can be greatly affected by lo-cal factors;and attention should be paid when explaining observed GPS velocity vectors. 相似文献
20.
Yunfeng Tian 《地球空间信息科学学报》2013,16(3):207-215
The nearly nine-year continuous GPS data collected since 1 March 1999 from the Crustal Motion Observation Network of China (CMONOC) were consistently analyzed. Most of the nonlinear movements in the cumulative position time series produced by CMONOC data center disappeared; and more accurate vertical terms and tectonic signals were extracted. Displacements caused by atmospheric pressure loading, nontidal ocean loading, soil moisture mass loading, and snow cover mass loading using the National Centers for Environmental Prediction (NCEP) Reanalysis I/II models and Estimation of the Circulation and Climate of the Ocean (ECCO) data can explain most of the vertical annual terms at many stations, while only parts can be explained at Lhasa and southern coastal sites, indicating that there are some deformation mechanisms that are still unknown or not modeled accurately. The remarkable differences in vertical position time series for short-baseline sites reveal that GPS stations can be greatly affected by local factors; and attention should be paid when explaining observed GPS velocity vectors. 相似文献