共查询到9条相似文献,搜索用时 15 毫秒
1.
Yong-Tian Zhu Jiang-Pei Dou Xi Zhang Gang Zhao Jing Guo Leopoldo Infante 《天文和天体物理学研究(英文版)》2021,(4):32-40
The portable adaptive optics(PAO) device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO) system,because of the physical space limitation at the Nasmyth or Cassegrain focus and the historically high cost of conventional AO.The initial scientific observations of the PAO are focused on the direct imaging of exoplanets and sub-stellar companions.This paper discusses the concept of PAO and the associated high-contrast imaging performance in our recent observational runs.PAO deliver a Strehl ratio better than 60% in H band under median seeing conditions of 1 ".Combined with our dedicated image rotation and subtraction(IRS) technique and the optimized IRS(O-IRS) algorithm,the averaged contrast ratio for a 5 ≤V_(mag)≤9 primary star is 1.3×10~(-5) and3.3×10~(-6) at angular distance of 0.36" with exposure time of 7 minutes and 2 hours,respectively.PAO has successfully revealed the known exoplanet of κ And b in our recent observation with the 3.5-meter ARC telescope at Apache Point Observatory.We have performed the associated astrometry and photometry analysis of the recovered κ And b planet,which gives a projected separation of 0.98 "±0.05",a position angle of 51.1°±0.5° and a mass of 10.15_(-1.255) ~(+2.19) M_(Jup).These results demonstrate that PAO can be used for direct imaging of exoplanets with medium-sized telescopes. 相似文献
2.
《天文和天体物理学研究(英文版)》2016,(5)
The light reflected from planets is polarized mainly due to Rayleigh scattering, but starlight is normally unpolarized. Thus it provides an approach to enhance the imaging contrast by inducing the imaging polarimetry technique. In this paper, we propose a high-contrast imaging polarimeter that is optimized for the direct imaging of exoplanets, combined with our recently developed stepped-transmission filter based coronagraph. Here we present the design and calibration method of the polarimetry system and the associated test of its high-contrast performance. In this polarimetry system, two liquid crystal variable retarders(LCVRs) act as a polarization modulator, which can extract the polarized signal. We show that our polarimeter can achieve a measurement accuracy of about 0.2% at a visible wavelength(632.8 nm)with linearly polarized light. Finally, the whole system demonstrates that a contrast of 10~(-9) at 5λ/D is achievable, which can be used for direct imaging of Jupiter-like planets with a space telescope. 相似文献
3.
The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman-α line (λ =?121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics. 相似文献
4.
Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes, which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an appropriate point spread function in a wide field of view. The compensation results mainly depend on the turbulence distribution. The atmospheric turbulence at Dome A in the Antarctic is mainly distributed below 15 meters, which is an ideal site for applications of GLAO. The GLAO system has been simulated for the Kunlun Dark Universe Survey Telescope, which will be set up at Dome A, and uses a rotating mirror to generate several laser guide stars and a wavefront sensor with a wide field of view to sequentially measure the wavefronts from different laser guide stars. The system is simulated on a computer and parameters of the system are given, which provide detailed information about the design of a practical GLAO system. 相似文献
5.
6.
H. Ebeling D. A. White F. V. N. Rangarajan 《Monthly notices of the Royal Astronomical Society》2006,368(1):65-73
An efficient algorithm for adaptive kernel smoothing (AKS) of two-dimensional imaging data has been developed and implemented using the Interactive Data Language ( idl ). The functional form of the kernel can be varied (top-hat, Gaussian, etc.) to allow different weighting of the event counts registered within the smoothing region. For each individual pixel, the algorithm increases the smoothing scale until the signal-to-noise ratio (S/N) within the kernel reaches a pre-set value. Thus, noise is suppressed very efficiently, while at the same time real structure, that is, signal that is locally significant at the selected S/N level, is preserved on all scales. In particular, extended features in noise-dominated regions are visually enhanced. The asmooth algorithm differs from other AKS routines in that it allows a quantitative assessment of the goodness of the local signal estimation by producing adaptively smoothed images in which all pixel values share the same S/N above the background .
We apply asmooth to both real observational data (an X-ray image of clusters of galaxies obtained with the Chandra X-ray Observatory) and to a simulated data set. We find the asmooth ed images to be fair representations of the input data in the sense that the residuals are consistent with pure noise, that is, they possess Poissonian variance and a near-Gaussian distribution around a mean of zero, and are spatially uncorrelated. 相似文献
We apply asmooth to both real observational data (an X-ray image of clusters of galaxies obtained with the Chandra X-ray Observatory) and to a simulated data set. We find the asmooth ed images to be fair representations of the input data in the sense that the residuals are consistent with pure noise, that is, they possess Poissonian variance and a near-Gaussian distribution around a mean of zero, and are spatially uncorrelated. 相似文献
7.
We will present first results of ESO-VLT AO-assisted integral-field spectroscopy of a sample of X-ray bright AGN with redshifts of 0.04 < z < 1. We constructed this sample by cross-correlating the SDSS and ROSAT surveys and utilizing typical AO constraints. This sample allows for a detailed study of the NIR properties of the nuclear and host environments with high spectral resolution on the 100 pc scale. These objects can then be compared directly to the local (z < 0.01) galaxy populations (observed without AO) at the same linear scale. As a current example, we will present observations of the z = 0.034 Seyfert 1.8 galaxy Mrk 609 with the new AO-assisted integral-field spectrometer SINFONI at the VLT. The successful observations show, that in the future – while having observed more objects – we will be able to determine the presence, frequency and importance of nuclear bars and/or circum-nuclear star forming rings in these objects and address the question of how these X-ray luminous AGN and their hosts are linked to optically/UV-bright QSOs, low-z QSOs/radio galaxies, or ULIRGs. 相似文献
8.
A detailed case study of γ-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for γ-hadron segregation. 相似文献
9.
N. Solomos 《Astronomische Nachrichten》2008,329(3):252-254
This contribution aims to introduce the idea that a well‐evolved HTN of the far future, with the anticipated addition of very large apertures, could also be made to incorporate the ability to carry out photonic astronomy observations, particularly Optical VLBI in a revived Hanbury‐Brown and Twiss Intensity Interferometry (HBTII) configuration. Such an HTN could exploit its inherent rapid reconfigurational ability to become a multi‐aperture distributed photon‐counting network able to study higher‐order spatiotemporal photon correlations and provide a unique tool for direct diagnostics of astrophysical emission processes. We very briefly review various considerations associated with the switching of the HTN to a special mode in which single‐photon detection events are continuously captured for a posteriori intercorrelation. In this context, photon arrival times should be determined to the highest time resolution possible and extremely demanding absolute time keeping and absolute time distribution schemes should be devised and implemented in the HTN nodes involved. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献