首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of collinear and triangular libration points is investigated in the photogravitational elliptic restricted three-body problem, in which two primary bodies emit light energy simultaneously. The conditions of stability of the collinear and triangular libration points are obtained based on a linearized set of equations of perturbed motion for various values of the eccentricity of the Keplerian orbits and the mass ratio of the primary bodies. The maximal numerical value is defined for the eccentricity at which a stable libration point can still exist. It is demonstrated how the parametric resonance causes an instability of collinear and triangular libration points; the evolution of the origination of the instability zones is traced. The minimal eccentricity value is found at which zones of instability of triangular libration points arise.  相似文献   

2.
In the framework of the circular restricted three-body problem, the center manifolds associated with collinear libration points contain all the bounded orbits moving around these points. Semianalytical computation of the center manifolds and the associated canonical transformation are valuable tools for exploring the design space of libration point missions. This paper deals with the refinement of reduction to the center manifold procedure. In order to reduce the amount of calculation needed and avoid repetitive computation of the Poisson bracket, a modified method is presented. By using a polynomial optimization technique, the coordinate transformation is conducted more efficiently. In addition, an alternative way to do the canonical coordinate transformation is discussed, which complements the classical approach. Numerical simulation confirms that more accurate and efficient numerical exploration of the center manifold is made possible by using the refined method.  相似文献   

3.
This paper deals with the existence and the stability of the libration points in the restricted three-body problem when the smaller primary is an ellipsoid. We have determined the equations of motion of the infinitesimal mass which involves elliptic integrals and then we have investigated the collinear and non collinear libration points and their stability. This is observed that there exist five collinear libration points and the non collinear libration points are lying on the arc of the unit circle whose centre is the bigger primary. Further observed that the libration points either collinear or non-collinear all are unstable.  相似文献   

4.
This paper presents a numerical algorithm that can generate long-term libration points orbits (LPOs) and the transfer orbits from the parking orbits to the LPOs in the circular-restricted three-body problem (CR3BP) and the full solar system model without initial guesses. The families of the quasi-periodic LPOs in the CR3BP can also be constructed with this algorithm. By using the dynamical behavior of LPO, the transfer orbit from the parking orbit to the LPO is generated using a bisection method. At the same time, a short segment of the target LPO connected with the transfer orbit is obtained, then the short segment of LPO is extended by correcting the state towards its adjacent point on the stable manifold of the target LPO with differential evolution algorithm. By implementing the correction strategy repeatedly, the LPOs can be extended to any length as needed. Moreover, combining with the continuation procedure, this algorithm can be used to generate the families of the quasi-periodic LPOs in the CR3BP.  相似文献   

5.
This paper investigates the orbit radial stabilization of a two-craft virtual Coulomb structure about circular orbits and at Earth–Moon libration points. A generic Lyapunov feedback controller is designed for asymptotically stabilizing an orbit radial configuration about circular orbits and collinear libration points. The new feedback controller at the libration points is provided as a generic control law in which circular Earth orbit control form a special case. This control law can withstand differential solar perturbation effects on the two-craft formation. Electrostatic Coulomb forces acting in the longitudinal direction control the relative distance between the two satellites and inertial electric propulsion thrusting acting in the transverse directions control the in-plane and out-of-plane attitude motions. The electrostatic virtual tether between the two craft is capable of both tensile and compressive forces. Using the Lyapunov’s second method the feedback control law guarantees closed loop stability. Numerical simulations using the non-linear control law are presented for circular orbits and at an Earth–Moon collinear libration point.  相似文献   

6.
Due to various perturbations, the collinear libration points of the real Earth–Moon system are not equilibrium points anymore. Under the assumption that the Moon’s motion is quasi-periodic, special quasi-periodic orbits called dynamical substitutes exist. These dynamical substitutes replace the geometrical collinear libration points as time-varying equilibrium points. In the paper, the dynamical substitutes of the three collinear libration points in the real Earth–Moon system are computed. For the points L 1 and L 2, linearized motions around the dynamical substitutes are described, and the variational equations of the dynamical substitutes are reduced to a form with a near constant coefficient matrix. Then higher order analytical formulae of the central manifolds are constructed. Using these analytical solutions as initial seeds, Lissajous orbits and halo orbits are computed with numerical algorithms.  相似文献   

7.
In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth–Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.  相似文献   

8.
定点在日-地(月)系L1点附近的探测器的发射及维持   总被引:1,自引:0,他引:1  
侯锡云  刘林 《天文学报》2007,48(3):364-373
在限制性三体问题中共线平动点附近的运动虽然是不稳定的,但可以是有条件稳定的,该动力学特征使得一些有特殊目的的探测器只需消耗较少的能量即可定点在这些点附近(如ISEE-3、SOHO).以日-地(月)系的L1点为例,根据其附近的运动特征,探讨定点探测器的发射与轨道控制问题,给出了相应的数值模拟结果,为工程上的实现提供理论依据.  相似文献   

9.
In this paper we consider the circular restricted problem of three oblate spheroids. The collinear equilibrium solutions are obtained. Finally a numerical study of the influence of the non-sphericity in the location of the libration points is made.  相似文献   

10.
The possibility of stabilizing the collinear libration points of the circular restricted three-body problem by using an additional jet acceleration (constant in magnitude) is investigated. Three stabilization laws are considered when the jet acceleration is either directed continuously to one of the primariesm 1,m 2 or is parallel to the line joining them. The solution of the problem formulated is based on the method of the driving forces structure analysis created by W. Thomson and P. Tait. It is shown that none of the stabilization laws mentioned ensures the existence of the isolated minimum of changed potential energy, and therefore the secular stability of the collinear libration points is impossible. In the 3rd and 4th paragraphs the possibility of a gyroscopic stabilization of these points is considered. It is shown that the gyroscopic stabilization of the external libration points is possible only when jet acceleration is either directed to the distant mass or is parallel to the line joining the primaries. The necessary and sufficient conditions of the gyroscopic stabilization are given. It is also shown that the internal libration points cannot be stabilized by any of the laws considered. For the Earth-Moon system the numerical data of time-existence of the satellite in the vicinity of the libration point situated near the Moon are given.  相似文献   

11.
In this paper we consider the restricted problem of three axisymmetric rigid bodies under the central forces. The collinear and triangular equilibrium solutions are obtained. Finally a numerical study of the influence of the non-sphericity and the rotation of the primaries in the location of the libration points is made.  相似文献   

12.
In previous studies, Lissajous trajectories associated with the collinear libration points in the restricted three-body problem have been successfully computed analytically to at least third-order. Those approximations are utilized to determine such trajectories numerically for an arbitrary, predetermined number of revolutions in the rotating frame, for the case of circular primary motion. The numerical approach first identifies target positions at specified intervals along the trajectory and locates a continuous path through those points with velocity discontinuities. Then the v are simultaneously reduced in an iterative process. Such trajectories have been constructed in various primary systems, for a wide range of orbit sizes and a large number of revolutions.  相似文献   

13.
Bifurcating families around collinear libration points   总被引:1,自引:0,他引:1  
The planar and the vertical Lyapunov families are two basic periodic families around the collinear libration points. The stability curves of these two families are given first, and then periodic families bifurcating from them are explored in detail. Several properties of these bifurcating families are found. This study follows a series of the authors’ publications on periodic families around the libration points in the restricted three-body problem.  相似文献   

14.
The restricted three-body problem in Schwarzschild's gravitational field is analyzed. The existen- ce of the equilibrium points in the orbital plane is discussed and the corresponding positions are established. There are three collinear libration points, and, if they exist, two triangular libration points (situated in the orbital plane of the primaries). If triangular points exist, they may not form equilateral triangles; the triangles are isosceles for equal masses of the primaries, and scalene else.  相似文献   

15.
16.
High-order analytical solutions of invariant manifolds, associated with Lissajous and halo orbits in the elliptic restricted three-body problem (ERTBP), are constructed in this paper. The equations of motion of ERTBP in the pulsating synodic coordinate system have five equilibrium points, and the three collinear libration points as well as the associated center manifolds are unstable. In our calculation, the general solutions of the invariant manifolds associated with Lissajous and halo orbits around collinear libration points are expressed as power series of five parameters: the orbital eccentricity, two amplitudes corresponding to the hyperbolic manifolds, and two amplitudes corresponding to the center manifolds. The analytical solutions up to arbitrary order are constructed by means of Lindstedt–Poincaré method, and then the center and invariant manifolds, transit and non-transit trajectories in ERTBP are all parameterized. Since the circular restricted three-body problem (CRTBP) is a particular case of ERTBP when the eccentricity is zero, the general solutions constructed in this paper can be reduced to describe the dynamics around the collinear libration points in CRTBP naturally. In order to check the validity of the series expansions constructed, the practical convergence of the series expansions up to different orders is studied.  相似文献   

17.
The location and the stability in the linear sense of the libration points in the restricted problem have been studied when there are perturbations in the potentials between the bodies. It is seen that if the perturbing functions satisfy certain conditions, there are five libration points, two triangular and three collinear. It is further observed that the collinear points are unstable and for the triangular points, the range of stability increases or decreases depending upon whetherP> or <0 wherep depends upon the perturbing functions. The theory is verified in the following four cases:
  1. There are no perturbations in the potentials (classical problem).
  2. Only the bigger primary is an oblate spheroid whose axis of symmetry is perpendicular to the plane of relative motion (circular) of the primaries.
  3. Both the primaries are oblate spheroids whose axes of symmetry are perpendicular to the plane of relative motion (circular) of the primaries.
  4. The primaries are spherical in shape and the bigger is a source of radiation.
  相似文献   

18.
In this paper we have proved the existence of libration points for the generalised photogravitational restricted problem of three bodies. We have assumed the infinitesimal mass of the shape of an oblate spheroid and both of the finite masses to be radiating bodies and the effect of their radiation pressure on the motion of the infinitesimal mass has also been taken into account. It is seen that there is a possibility of nine libration points for small values of oblateness, three collinear, four coplanar and two triangular.  相似文献   

19.
Out-of-plane motion about libration points is studied within the framework of the elliptic restricted three-body problem. Nonlinear motion in the circular restricted problem is given to third order in the out-of-plane amplitudeA z by Jacobi elliptic functions. Linear motion in the elliptic problem is studied using Mathieu's and Hill's equations. Additional terms needed for a complete third-order theory are found using Lindsted's method. This theory is constructed for the case of collinear libration points; for the case of triangular points, a third-order nonlinear solution is given separately in terms of Jacobi elliptic functions.  相似文献   

20.
In this paper the existence of collinear as well as equilateral libration points for the generalised elliptic restricted three body problem has been studied distinct from Kondurar and Shinkarik (1972) where a study has been made for the generalised circular restricted three body problem. Here the coordinates of the libration points have been found to be functions of timet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号