首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

3.
4.
We analyse a   z < 0.1  galaxy sample from the Sloan Digital Sky Survey focusing on the variation in the galaxy colour bimodality with stellar mass     and projected neighbour density Σ, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about  1010.6  to     (Kroupa initial mass function,   H 0= 70  ) for Σ in the range  0.1–10 Mpc−2  . The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour–mass and colour–concentration indices not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in  log Σ  and     bins). The red fraction   f r   generally increases continuously in both Σ and     such that there is a unified relation:     . Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N -body simulation: the Bower et al. and Croton et al. models that incorporate active galactic nucleus feedback. Both models predict a strong dependence of the red fraction on stellar mass and environment that is qualitatively similar to the observations. However, a quantitative comparison shows that the Bower et al. model is a significantly better match; this appears to be due to the different treatment of feedback in central galaxies.  相似文献   

5.
6.
7.
8.
We present luminosity and surface-brightness distributions of 40 111 galaxies with K -band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K - and r -band magnitude, K -band surface brightness and K -band radius are included explicitly in the  1/ V max  estimate of the space density and luminosity function. The bivariate brightness distribution in K -band absolute magnitude and surface brightness is presented and found to display a clear luminosity–surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K -band luminosity function are found to be   M *− 5 log  h =−23.19 ± 0.04, α=−0.81 ± 0.04  and  φ*= (0.0166 ± 0.0008)  h 3 Mpc−3  , although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be   j = (6.305 ± 0.067) × 108 L  h  Mpc−3  . However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.  相似文献   

9.
10.
11.
We quantitatively scrutinize the effects of the radiation drag arising from the radiation fields in a galactic bulge in order to examine the possibility that the radiation drag could be an effective mechanism to extract angular momentum in a spheroidal system like a bulge and allow plenty of gas to accrete on to the galactic centre. For this purpose, we numerically solve the relativistic radiation hydrodynamical equation coupled with accurate radiative transfer, and quantitatively assess the radiation drag efficiency. As a result, we find that in an optically thick regime the radiation drag efficiency is sensitively dependent on the density distributions of the interstellar medium (ISM). The efficiency drops according to     in an optically thick uniform ISM, where τ T is the total optical depth of the dusty ISM , whereas the efficiency remains almost constant at a high level if the ISM is clumpy . Hence, if bulge formation begins with a star formation event in a clumpy ISM, the radiation drag will effectively work to remove the angular momentum and the accreted gas may form a supermassive black hole. As a natural consequence, this mechanism reproduces a putative linear relation between the mass of a supermassive black hole and the mass of a galactic bulge, although further detailed modelling for stellar evolution is required for a more precise prediction.  相似文献   

12.
It has been recently shown that the dynamical V -band mass-to-light ratios of compact stellar systems with masses from 106 to  108 M  are not consistent with the predictions from simple stellar population models. Top-heavy stellar initial mass functions (IMFs) in these so-called ultra-compact dwarf galaxies (UCDs) offer an attractive explanation for this finding, the stellar remnants and retained stellar envelopes providing the unseen mass. We therefore construct a model which quantifies by how much the IMFs of UCDs would have to deviate in the intermediate- and high-mass range from the canonical IMF in order to account for the enhanced   M / LV   ratio of the UCDs. The deduced high-mass IMF in the UCDs depends on the age of the UCDs and the number of faint products of stellar evolution retained by them. Assuming that the IMF in the UCDs is a three-part power law equal to the canonical IMF in the low-mass range and taking 20 per cent as a plausible choice for the fraction of the remnants of high-mass stars retained by UCDs, the model suggests the exponent of the high-mass IMF to be ≈1.6 if the UCDs are  13 Gyr  old (i.e. almost as old as the Universe) or ≈1.0 if the UCDs are  7 Gyr  old, in contrast to 2.3 for the Salpeter–Massey IMF. If the IMF was as top heavy as suggested here, the stability of the UCDs might have been threatened by heavy mass loss induced by the radiation and evolution of massive stars. The central densities of UCDs must have been in the range  106 to 107 M pc−3  when they formed with star formation rates of  10 to 100 M yr−1  .  相似文献   

13.
14.
15.
16.
We use the 2dF Galaxy Redshift Survey to measure the dependence of the b J-band galaxy luminosity function on large-scale environment, defined by density contrast in spheres of radius  8  h −1 Mpc  , and on spectral type, determined from principal component analysis. We find that the galaxy populations at both extremes of density differ significantly from that at the mean density. The population in voids is dominated by late types and shows, relative to the mean, a deficit of galaxies that becomes increasingly pronounced at magnitudes brighter than   M b J−5log10 h ≲−18.5  . In contrast, cluster regions have a relative excess of very bright early-type galaxies with   M b J−5log10 h ≲−21  . Differences in the mid- to faint-end population between environments are significant: at   M b J−5log10 h =−18  early- and late-type cluster galaxies show comparable abundances, whereas in voids the late types dominate by almost an order of magnitude. We find that the luminosity functions measured in all density environments, from voids to clusters, can be approximated by Schechter functions with parameters that vary smoothly with local density, but in a fashion that differs strikingly for early- and late-type galaxies. These observed variations, combined with our finding that the faint-end slope of the overall luminosity function depends at most weakly on density environment, may prove to be a significant challenge for models of galaxy formation.  相似文献   

17.
It has frequently been suggested in the literature that the stellar IMF in galaxies was top-heavy at early times. This would be plausible physically if the IMF depended on a mass-scale such as the Jeans mass that was higher at earlier times because of the generally higher temperatures that were present then. In this paper it is suggested, on the basis of current evidence and theory, that the IMF has a universal Salpeter-like form at the upper end, but flattens below a characteristic stellar mass that may vary with time. Much of the evidence that has been attributed to a top-heavy early IMF, including the ubiquitous G-dwarf problem, the high abundance of heavy elements in clusters of galaxies, and the high rate of formation of massive stars in high-redshift galaxies, can be accounted for with such an IMF if the characteristic stellar mass was several times higher during the early stages of galaxy evolution. However, significant variations in the mass-to-light ratios of galaxies and large amounts of dark matter in stellar remnants are not as easily explained in this way, because they require more extreme and less plausible assumptions about the form and variability of the IMF. Metal-free 'population III' stars are predicted to have an IMF that consists exclusively of massive stars, and they could help to account for some of the evidence that has been attributed to a top-heavy early IMF, as well as contributing importantly to the energetics and chemical enrichment of the early Universe.  相似文献   

18.
19.
We measure the     B -band optical luminosity function (LF) for galaxies selected in a blind H  i survey. The total LF of the H  i selected sample is flat, with Schechter parameters     and     , in good agreement with LFs of optically selected late-type galaxies. Bivariate distribution functions of several galaxy parameters show that the H  i density in the local Universe is more widely spread over galaxies of different size, central surface brightness and luminosity than the optical luminosity density is. The number density of very low surface brightness (LSB ) (>24.0 mag arcsec−2) gas-rich galaxies is considerably lower than that found in optical surveys designed to detect dim galaxies. This suggests that only a part of the population of LSB galaxies is gas-rich and that the rest must be gas-poor. However, we show that this gas-poor population must be cosmologically insignificant in baryon content. The contribution of gas-rich LSB galaxies (>23.0 mag arcsec−2) to the local cosmological gas and luminosity density is modest     and     per cent respectively); their contribution to Ωmatter is not well-determined, but probably <11 per cent. These values are in excellent agreement with the low redshift results from the Hubble Deep Field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号