共查询到20条相似文献,搜索用时 15 毫秒
1.
Santosh Kumar 《Planetary and Space Science》2010,58(5):741-748
Highly variable conditions prevail in the geospace environment due to the variations in Solar activity. The characteristics of the magnetic clouds (MCs) and their effects on geosphere, which have occurred during the period January 1996 to December 2006; have been investigated. No systematic trend has been observed between MCs and Solar activity cycle which is analyzed on the basis of maximum Sunspot number in that particular year. 85% MCs are found to be geoeffective. MCs are divided into two major classes: unipolar and bipolar. Unipolar MCs are of south (S) or north (N) type while bipolar MCs are of south-north (SN) or north-south (NS) type. During Solar cycle 23, SN-type MCs dominated over NS-type MCs. Highly intense geomagnetic storms (GMSs) of Dst <−300 nT follow from SN or S-type MCs. No preference is observed for right handed (RH) or left handed (LH) clouds for being geoeffective. MCs of very high speed lead to intense GMSs. The correlation coefficient (r) of southward component of magnetic field (Bz), total magnetic field (B) and their products with plasma flow speed (VB and VBz) with Dst are observed to be r=0.78, −0.81, −0.79 and 0.82, respectively, which suggests that these parameters are reliable indicators of the strength of GMS. SN clouds do not always lead to more fall in Dst value (or lead to high strength of GMS) than NS clouds for similar value of Bz minimum associated with both type of MCs. 相似文献
2.
Interplanetary coronal mass ejections (ICMEs) and their subset, magnetic clouds (MCs), are important manifestations of solar activity which have substantial impact on the geomagnetic field. We re-analyze events already identified in Wind and Voyager 2 data and estimate changes of their geometry along the path from the Sun. The analysis is based on the thickness of the sheath between a shock and a particular ICME or MC which is proportional to the apparent curvature radius of ICMEs/MCs. We have found that this apparent radius of curvature increases with the Mach number and this effect is attributed to the larger deformation of the fast ICME/MC. Further, the relative sheath thickness that is proportional to the flux rope oblateness decreases with the magnetic field intensity inside the ICME/MC and increases with the heliospheric distance. 相似文献
3.
In this paper we performed the selection of sharp and large solar wind ion flux changes and comparison of them by simultaneous observations onboard two or three spacecraft. It was shown that these sharp changes survive on the way up to million km or even sharpen on this way. 相似文献
4.
In this paper, we analyze the interplanetary causes of eight great geomagnetic storms during the solar maximum (2000-2001). The result shows that the interplanetary causes were the intense southward magnetic field and the notable characteristic among the causal mechanism is compression. Six of eight great geomagnetic storms were associated with the compression of southward magnetic field, which can be classified into (1) the compression between ICMEs (2) the compression between ICMEs and interplanetary medium. It suggests that the compressed magnetic field would be more geoeffective. At the same time, we also find that half of all great storms were related to successive halo CMEs, most of which originated from the same active region. The interactions between successive halo CMEs usually can lead to greater geoeffectiveness by enhancing their southward field Bs interval either in the sheath region of the ejecta or within magnetic clouds (MCs). The types of them included: the compression between the fast speed transient flow and the slow speed background flow, the multiple MCs, besides shock compression. Further, the linear fit of the Dst versus gives the weights of and Δt as α=2.51 and β=0.75, respectively. This may suggest that the compression mechanism, with associated intense Bs, rather than duration, is the main factor in causing a great geomagnetic storm. 相似文献
5.
6.
Yunhee Choi Y.-J. Moon Seonghwan Choi Ji-Hye Baek Sungsoo S. Kim K.-S. Cho G. S. Choe 《Solar physics》2009,254(2):311-323
We have examined the relationships among coronal holes (CHs), corotating interaction regions (CIRs), and geomagnetic storms in the period 1996?–?2003. We have identified 123 CIRs with forward and reverse shock or wave features in ACE and Wind data and have linked them to coronal holes shown in National Solar Observatory/Kitt Peak (NSO/KP) daily He i 10?830 Å maps considering the Sun?–?Earth transit time of the solar wind with the observed wind speed. A sample of 107 CH?–?CIR pairs is thus identified. We have examined the magnetic polarity, location, and area of the CHs as well as their association with geomagnetic storms (Dst≤?50 nT). For all pairs, the magnetic polarity of the CHs is found to be consistent with the sunward (or earthward) direction of the interplanetary magnetic fields (IMFs), which confirms the linkage between the CHs and the CIRs in the sample. Our statistical analysis shows that (1) the mean longitude of the center of CHs is about 8°E, (2) 74% of the CHs are located between 30°S and 30°N (i.e., mostly in the equatorial regions), (3) 46% of the CIRs are associated with geomagnetic storms, (4) the area of geoeffective coronal holes is found to be larger than 0.12% of the solar hemisphere area, and (5) the maximum convective electric field E y in the solar wind is much more highly correlated with the Dst index than any other solar or interplanetary parameter. In addition, we found that there is also a semiannual variation of CIR-associated geomagnetic storms and discovered new tendencies as follows: For negative-polarity coronal holes, the percentage (59%; 16 out of 27 events) of CIRs associated with geomagnetic storms in the first half of the year is much larger than that (25%; 6 out of 24 events) in the second half of the year and the occurrence percentage (63%; 15 out of 24 events) of CIR-associated storms in the southern hemisphere is significantly larger than that (26%; 7 out of 27 events) in the northern hemisphere. Positive-polarity coronal holes exhibit an opposite tendency. 相似文献
7.
Daniel N. Baker Dusan Odstrcil Brian J. Anderson C. Nick Arge Mehdi Benna George Gloeckler Haje Korth Leslie R. Mayer Jim M. Raines David Schriver James A. Slavin Sean C. Solomon Pavel M. Trávní?ek Thomas H. Zurbuchen 《Planetary and Space Science》2011,59(15):2066-2074
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system. 相似文献
8.
The relationship between the orientation of the interplanetary magnetic field (IMF), represented by the clock angle which is the angle defined by IMF-By and -Bz components, and the AL and AU indices is examined at various dipole tilt angles for the period of 1978-1988. We use the IMF data obtained from the IMP 8 satellite, AL and AU indices with corrected seasonal variations, and the dipole tilt angle, which is the dipole magnetic latitude of the subsolar point calculated as a function of the day of year and universal time. For both positive (dipole tilted to the Sun) and negative dipole tilt angles, the values of |AL| and AU decrease as the IMF clock angle moves away from 180°, becoming more northward. The indices also tend to become smaller for larger dipole tilt angle, either toward or away from the Sun. This dependence on dipole tilt angle enhances the semiannual variation of geomagnetic activity. 相似文献
9.
The density and magnetic field strength of the dense cores in the Orion B molecular cloud are derived from the observed radius and FWHM line width based on the model of a uniformly magnetic sphere. We obtain the average magnetic field strength of 110μG and the average density of 8 × 104/cm3 for the 39 cores, which agree closely with the observations. The method for deriving the density and magnetic field strength is applicable to the cores with R>0.2pc. 相似文献
10.
In the present study the occurrence of an unusual class of low amplitude anisotropic wave trains in the cosmic ray neutron intensity, which is distinctly different from the average diurnal variation as well as from other recognized types of low amplitude anisotropic wave trains are noted and the directional distribution in the interplanetary space determined. The major objective of this paper is to study the first three harmonics of low amplitude anisotropic wave trains of cosmic ray intensity over the period 1981–1994 for Deep River neutron monitoring station. The significant characteristic of these events is that the low amplitude wave trains shows a maximum intensity of diurnal component in a direction earlier than 18:00 h/co-rotational direction. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams such as polar coronal holes. However the possibility of occurrence of these events during high-speed solar wind streams cannot be denied. The occurrence of low amplitude events is dominant for positive polarity of Bz. The disturbance storm time index i.e. Dst, remains consistently negative only for majority of the low amplitude wave train events, which is never been reported earlier. The amplitude as well as direction of first two harmonics seems to remain unaffected with the variation in the Dst and Ap-index. However, the amplitude as well as direction of third harmonic found to deviates with the increase of Dst and Ap-index. The corotating streams produce significant deviations in cosmic ray intensity as well as in solar wind speed during low amplitude anisotropic wave train events. 相似文献
11.
Without the shielding of a strong intrinsic magnetic field, the martian atmosphere directly interacts with the impacting solar wind. The neutral constituents of the atmospheric corona can be ionized, and then picked up and accelerated by the magnetic field and convection electric field in the solar wind. A significant fraction of pickup ions escape Mars’ gravitational pull and are lost to space. This non-thermal escape process of heavy species is an important mechanism responsible for atmospheric erosion. While there is a perception that the martian magnetic anomalies are significant for the ionospheric density distribution and the bow shock standoff location, little is known about the quantitative influence of the martian crustal magnetic field on the global distribution of escaping pickup ions. In this paper, we apply a newly developed Monte Carlo ion transport model to resolve the crustal field effect on the pickup oxygen ion distribution around Mars. The background magnetic and electric fields, in which test particles are followed, are calculated using an independent three-dimensional multispecies MHD model. The effects of the crustal magnetic field on particle escape are quantified by varying the crustal field orientation in the model setup and comparing the corresponding test particle simulation results. The comparison is made by turning on or off the crustal field or changing the local time of the strongest field from the dayside to the dawnside. It is found that without the protection of the crustal magnetic field, the total amount of atmospheric escape through the tail region would be enhanced by more than a factor of two. It is shown that the crustal magnetic field not only regionally deflects the solar wind around the martian atmosphere, but also has an important global effect on atmospheric erosion and thus on long-term atmospheric evolution. 相似文献
12.
Hector Javier Durand-Manterola 《Planetary and Space Science》2009,57(12):1405-1411
Context
The planets magnetic field has been explained based on the dynamo theory, which presents as many difficulties in mathematical terms as well as in predictions. It proves to be extremely difficult to calculate the dipolar magnetic moment of the extrasolar planets using the dynamo theory.Objective
The aim is to find an empirical relationship (justifying using first principles) between the planetary magnetic moment, the mass of the planet, its rotation period and the electrical conductivity of its most conductive layer. Then this is applied to Hot Jupiters.Method
Using all the magnetic planetary bodies of the solar system and tracing a graph of the dipolar magnetic moment versus body mass parameter, the rotation period and electrical conductivity of the internal conductive layer is obtained. An empirical, functional relation was constructed, which was adjusted to a power law curve in order to fit the data. Once this empirical relation has been defined, it is theoretically justified and applied to the calculation of the dipolar magnetic moment of the extra solar planets known as Hot Jupiters.Results
Almost all data calculated is interpolated, bestowing confidence in terms of their validity. The value for the dipolar magnetic moment, obtained for the exoplanet Osiris (HD209458b), helps understand the way in which the atmosphere of a planet with an intense magnetic field can be eroded by stellar wind. The relationship observed also helps understand why Venus and Mars do not present any magnetic field. 相似文献13.
Observations of the strength and spatial distribution of vector magnetic fields in active regions have revealed several fundamental
properties of the twist of their magnetic fields. First, the handedness of this twist obeys a hemispheric rule: left-handed
in the northern hemisphere, right-handed in the southern. Second, the rule is weak; active regions often disobey it. It is
statistically valid only in a large ensemble. Third, the rule itself, and the amplitude of the scatter about the rule, are
quantitatively consistent with twisting of fields by turbulence as flux tubes buoy up through the convection zone. Fourth,
there is considerable spatial variation of twist within active regions. However, relaxation to a linear force-free state,
which has been documented amply in laboratory plasmas, is not observed. 相似文献
14.
We have studied the morphology of magnetic flux tubes near Mars and have found that the magnetic field lines near Mars forms a wing-like flux tube structure downstream of the bow shock. These magnetic flux tubes are concentrated close to the plane, which contains the center of Mars, the interplanetary magnetic field, and the Mars-Sun line. Regions near Mars on dayside were found to be magnetically connected to the region downstream of the bow shock in the sunlight. The study suggests that the photoelectrons that were observed on the nightside far from Mars are associated with magnetic field lines which are, or which were, magnetically connected to the Martian dayside region. 相似文献
15.
We numerically analyze a magnetohydrodynamic, steady-state model for the interaction of a spherically symmetric solar wind with a three-component local interstellar medium (LISM), which is composed of plasma, hydrogen atoms, and a magnetic field. The magnetic field is assumed to be parallel to the velocity in the LISM. In this case, the model is axisymmetric. We study the effects of magnetic field on the plasma-flow geometry and on the distribution of hydrogen-atom parameters. In particular, we show that the presence of hydrogen atoms does not affect the qualitative change in the shape of the bow shock, the heliopause, and the solar-wind shock with increasing strength of the interstellar magnetic field. The presence of a magnetic field in the LISM can strongly affect the parameters of the energetic hydrogen atoms originated in the solar wind, although its effect on the “hydrogen wall” observed with the GHRS instrument onboard the HST spacecraft (Linsky and Wood 1996) is marginal. 相似文献
16.
The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are
moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but
gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward
waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal
Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates
with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal
gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on
whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results
lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional
mode called suprathermal mode whose phase velocity is higher than all the other modes. 相似文献
17.
L. V. Ksanfomality 《Astronomy Letters》2007,33(7):488-497
Analysis of the data obtained during transits of low-orbit extrasolar planets across the stellar disk yields different estimates of their atmospheric loss rates. Experimental data point to the probable existence of several distinct subtypes of extrasolar giant planets, including “hot Jupiters” of low density (HD 209458b), with massive cores composed of heavy elements (HD 149026b), and others. We show that the expected hot-Jupiter mass losses due to atmospheric escape on a cosmogonic time scale do not exceed a few percent, while the losses through Jeans dissipation are negligible. We also argue that low-orbit giant planets should have a strong magnetic field that interacts with circumstellar plasma with the planet’s supersonic orbital velocity. The magnetic field properties can be used to search for extrasolar planets. 相似文献
18.
Analysis of SOHO longitudinal magnetograms and Dopplergrams has revealed the appearance of a region of enhanced upflow of matter in the photosphere when the top of a loop-shaped magnetic flux tube forming a large active region passed through it. The maximum upflow velocity reached 2 km s?1, the maximum size exceeded 20 000 km, and the lifetime was about 2 h. 相似文献
19.
Ai-hua Zhou Qi-jun Fu He-qi Zhang Xin-dong Wang 《Chinese Astronomy and Astrophysics》1996,20(4):458-466
The observations of a microwave burst with multiple impulses on 1993 Oct 2, 073940–074100 UT are analysed. This event consists of multiple impulses superimposed on a slowly varying burst background. Our formula for coronal magnetic field diagnostics was used here for the first time to derive the field strength and information on the energetic electrons. The results are: 1) The mean spectral index of the impulsive component in the optically thin part is less than that of the slow background by 1 (a harder spectrum). The mean brightness temperature at 19.6 GHz of the former is 6 times that of the latter. 2) The mean magnetic strengths of the impulse and slow burst regions are 158 G and 531 G, respectively. The time variation in the slow burst region is saddle-shaped, being 50% lower in the middle than at the beginning and end. 3) The column density NL and number density N of energetic electrons in the impulsive component are 4% and 8% of those of the slow component, but the energy flux and emission coefficient are 100% and 800% greater. The two components appear to be produced by two different electron groups with different energy distributions in two different regions. 相似文献
20.
Physical, Chemical, and Mineralogical Properties of Comet 81P/Wild 2 Particles Collected by Stardust
George James Flynn 《Earth, Moon, and Planets》2008,102(1-4):447-459
NASA’s Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils.
The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging
from <10−15 to ∼10−4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in
the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates
of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks
were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar
to Ca–Al inclusions in primitive meteorites. Minor mineral phases, including Cu–Fe-sulfide, Fe–Zn-sulfide, carbonate and metal
oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu,
Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with
the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed
(>10 μm). Because Stardust collected particles from several jets, sampling material from different regions of the interior
of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range
sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical
compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in
the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and
for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant depletion from the CI values and the moderately
volatile elements Cu, Zn, Ga are enriched relative to CI. This elemental abundance pattern is similar to that in anhydrous,
porous interplanetary dust particles (IDPs), suggesting that, if Wild 2 dust preserves the original composition of the Solar
Nebula, the anhydrous, porous IDPs, not the CI meteorites, may best reflect the Solar Nebula abundances. This might be tested
by elemental composition measurements on cometary meteors. 相似文献