首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we examine the spectral and morphometric properties of the four important lunar mare dome fields near Cauchy, Arago, Hortensius, and Milichius. We utilize Clementine UV-vis multispectral data to examine the soil composition of the mare domes while employing telescopic CCD imagery to compute digital elevation maps in order to determine their morphometric properties, especially flank slope, height, and edifice volume. After reviewing previous attempts to determine topographic data for lunar domes, we propose an image-based 3D reconstruction approach which is based on a combination of photoclinometry and shape from shading. Accordingly, we devise a classification scheme for lunar mare domes which is based on a principal component analysis of the determined spectral and morphometric features. For the effusive mare domes of the examined fields we establish four classes, two of which are further divided into two subclasses, respectively, where each class represents distinct combinations of spectral and morphometric dome properties. As a general trend, shallow and steep domes formed out of low-TiO2 basalts are observed in the Hortensius and Milichius dome fields, while the domes near Cauchy and Arago that consist of high-TiO2 basalts are all very shallow. The intrusive domes of our data set cover a wide continuous range of spectral and morphometric quantities, generally characterized by larger diameters and shallower flank slopes than effusive domes. A comparison to effusive and intrusive mare domes in other lunar regions, highland domes, and lunar cones has shown that the examined four mare dome fields display such a richness in spectral properties and 3D dome shape that the established representation remains valid in a more global context. Furthermore, we estimate the physical parameters of dome formation for the examined domes based on a rheologic model. Each class of effusive domes defined in terms of spectral and morphometric properties is characterized by its specific range of values for lava viscosity, effusion rate, and duration of the effusion process. For our data set we report lava viscosities between about 102 and , effusion rates between 25 and , and durations of the effusion process between three weeks and 18 years. Lava viscosity decreases with increasing R415/R750 spectral ratio and thus TiO2 content; however, the correlation is not strong, implying an important influence of further parameters like effusion temperature on lava viscosity.  相似文献   

2.
In this study we examine a set of lunar mare domes located in the Hortensius/Milichius/T. Mayer region and in northern Mare Tranquillitatis with respect to their formation along crustal fractures, their rheologic properties, the dimensions of their feeder dikes, and the importance of magma evolution processes during dome formation. Many of these domes display elongated summit vents oriented radially with respect to major impact basins, and several dome locations are also aligned in these preferential directions. Analysis of Clementine UV/VIS and Lunar Prospector gamma ray spectrometer data reveals that the examined mare domes formed from low-Si basaltic lavas of high FeO and low to moderate TiO2 content. Based on their morphometric properties (diameter, height, volume) obtained by photoclinometric and shape from shading analysis of telescopic CCD images, we derive rheologic quantities (lava viscosity during eruption, effusion rate, duration of the effusion process, magma rise speed) and the dimensions of the feeder dikes. We establish three rheologic groups characterised by specific combinations of rheologic properties and dike dimensions, where the most relevant discriminative parameter is the lava viscosity η. The first group is characterised by and contains the domes with elongated vents in the Milichius/T. Mayer region and two similar domes in northern Mare Tranquillitatis. The second group with comprises the very low aligned domes in northern Mare Tranquillitatis, and the third group with the relatively steep domes near Hortensius and in the T. Mayer region. The inferred dike dimensions in comparison to lunar crustal thickness data indicate that the source regions of the feeder dikes are situated within the upper crust for six of the domes in northern Mare Tranquillitatis, while they are likely to be located in the lower crust and in the upper mantle for the other examined domes. By comparing the time scale of magma ascent with the time scale on which heat is conducted from the magma into the host rock, we find evidence that the importance of magma evolution processes during ascent such as cooling and crystallisation increases with lava viscosity. We conclude that different degrees of evolution of initially fluid basaltic magma are able to explain the broad range of lava viscosities inferred for the examined mare domes. The spectral data reveal that differences in TiO2 content may additionally account for the systematic difference in lava viscosity between the two examined lunar regions. We show that the described mechanisms are likely to be valid also for other lunar mare domes situated near Cauchy and Arago, regarded for comparison. On the other hand, we find for the Gruithuisen and Mairan highland domes that despite their inferred high lava viscosities of , no significant magma cooling in the dike occurred during ascent, supporting previous findings that the highland domes were formed during a specific phase of non-mare volcanism by highly silicic viscous lavas.  相似文献   

3.
This study examines a set of lunar domes with very low flank slopes which differ in several respects from the frequently occurring lunar effusive domes. Some of these domes are exceptionally large, and most of them are associated with faults or linear rilles of presumably tensional origin. Accordingly, they might be interpreted as surface manifestations of laccolithic intrusions formed by flexure-induced vertical uplift of the lunar crust (or, alternatively, as low effusive edifices due to lava mantling of highland terrain, or kipukas, or structural features). All of them are situated near the borders of mare regions or in regions characterised by extensive effusive volcanic activity. Clementine multispectral UVVIS imagery indicates that they do not preferentially occur in specific types of mare basalt. Our determination of their morphometric properties, involving a combined photoclinometry and shape from shading technique applied to telescopic CCD images acquired at oblique illumination, reveals large dome diameters between 10 and more than 30 km, flank slopes below 0.9°, and volumes ranging from 0.5 to 50 km3. We establish three morphometric classes. The first class, In1, comprises large domes with diameters above 25 km and flank slopes of 0.2°-0.6°, class In2 is made up by smaller and slightly steeper domes with diameters of 10-15 km and flank slopes between 0.4° and 0.9°, and domes of class In3 have diameters of 13-20 km and flank slopes below 0.3°. While the morphometric properties of several candidate intrusive domes overlap with those of some classes of effusive domes, we show that a possible distinction criterion are the characteristic elongated outlines of the candidate intrusive domes. We examine how they differ from typical effusive domes of classes 5 and 6 defined by Head and Gifford [Head, J.W., Gifford, A., 1980. Lunar mare domes: classification and modes of origin. Moon Planets 22, 235-257], and show that they are likely no highland kipukas due to the absence of spectral contrast to their surrounding. These considerations serve as a motivation for an analysis of the candidate intrusive domes in terms of the laccolith model by Kerr and Pollard [Kerr, A.D., Pollard, D.D., 1998. Toward more realistic formulations for the analysis of laccoliths. J. Struct. Geol. 20(12), 1783-1793], to estimate the geophysical parameters, especially the intrusion depth and the magma pressure, which would result from the observed morphometric properties. Accordingly, domes of class In1 are characterised by intrusion depths of 2.3-3.5 km and magma pressures between 18 and 29 MPa. For the smaller and steeper domes of class In2 the magma intruded to shallow depths between 0.4 and 1.0 km while the inferred magma pressures range from 3 to 8 MPa. Class In3 domes are similar to those of class In1 with intrusion depths of 1.8-2.7 km and magma pressures of 15-23 MPa. As an extraordinary feature, we describe in some detail the concentric crater Archytas G associated with the intrusive dome Ar1 and discuss possible modes of origin. In comparison to the candidate intrusive domes, terrestrial laccoliths tend to be smaller, but it remains unclear if this observation is merely a selection effect due to the limited resolution of our telescopic CCD images. An elongated outline is common to many terrestrial laccoliths and the putative lunar laccoliths, while the thickness values measured for terrestrial laccoliths are typically higher than those inferred for lunar laccoliths, but the typical intrusion depths are comparable.  相似文献   

4.
Geology and stratigraphy of King crater, lunar farside   总被引:1,自引:0,他引:1  
Clementine and photographic data sets have been used to investigate the crustal stratigraphy and geology of King crater on the lunar farside (120°E, 5.5°N). Pre-existing topographic regimes or stress fields dominate many structures in the crater, which has excavated materials from depths of up to 14 km. The upper crust in the area is noritic anorthosite, grading to a more anorthositic signature with depth. A possible batholithic intrusion is also present in a 15-km-wide band, extending from the southern crater floor to at least 50 km north of King, and from near-surface levels down to at least the excavation depth of the crater. It is generally feldspathic, but is cut by mafic dykes now visible in the north wall. King also shows evidence for the presence of a cryptomare, exposed in regions of the peaks and in dark halo craters within the ejecta blanket. Localized olivine-bearing mineralogies are observed on the central peaks, suggesting isolated pockets of troctolitic mineralogies to have been present at 8- to 14-km depths. Copious volumes of crystalline melt produced from the impact event cover King’s floor to a maximum thickness of 30-60 m, and have pooled in a number of natural depressions outside of the main crater. The main pool in the pre-existing A1-Tusi crater has a minimum depth of 150 m. Domes on the crater floor are verified as nonvolcanic in origin, and did not act as a source for any of the lava-like materials in King.  相似文献   

5.
Compositional analyses of lunar pyroclastic deposits   总被引:1,自引:0,他引:1  
The 5-band Clementine UVVIS data at ∼100 m/pixel were used to examine the compositions of 75 large and small lunar pyroclastic deposits (LPDs), and these were compared to representative lunar maria and highlands deposits. Results show that the albedo, spectral color, and inferred composition of most LPDs are similar to those of low-titanium, mature lunar maria. These LPDs may have consisted largely of fragmented basalt, with substantial components of iron-bearing mafic minerals (pyroxenes, olivine) and smaller amounts (if any) of volcanic glass. Several smaller LPDs also show substantial highland components. Three classes of very large deposits can be distinguished from most LPDs and from each other on the basis of crystallinity and possible titanium content of their pyroclastic components. One class has spectral properties that are dominated by high-titanium, crystallized “black beads” (e.g., Taurus-Littrow), a second consists of a mixture of high-titanium glasses and beads with a higher glass/bead ratio (Sulpicius Gallus) than that of Taurus-Littrow, and a third has a significant component of quenched iron-bearing volcanic glasses (Aristarchus) with possible moderate titanium contents. Although areally extensive, these three classes of very large pyroclastic deposits compose only 20 of the 75 deposits studied (∼27%), and eruption of such materials was thus likely to have been less frequent on the Moon.  相似文献   

6.
More than 200 venusian channels and valleys have been mapped based on analyses of Magellan SAR images. Sinuous rilles are the most abundant channels among six types of venusian channels, and they are widely distributed on Venus. Morphological characteristics of venusian sinuous rilles include sinuous narrowing reaches, source depressions, and length of several 10s to a few 100s of km. This type of channels is known to exist on the Moon and possibly on Mars. Valley networks on Venus often occur in the vicinity of or in connection to sinuous rilles. Cross-sectional morphologies of sinuous rilles and valley networks are of special importance in discussing their formation processes both qualitatively and quantitatively. We reconstructed cross-sectional profiles of 6 sinuous rilles and 2 valley networks using a new radar clinometric method. Reconstructed cross-sections revealed that floors of the channels and valleys are clearly lower than the surrounding plains. This finding implies that the sinuous rilles and the valley networks have erosional origins. Longitudinal depth profiles of the sinuous rilles show distinct decreasing trends toward the termini. Such decreasing trends of depths are qualitatively in agreement with theoretical models and laboratory experiments of thermal erosion. In order to verify this assertion quantitatively, we conduct simple 1-dimensional model calculations under the assumption that both channel-forming lavas and ground substrate are tholeiitic basalt. For initial lava thicknesses in the range 2-6 m, the model calculations yield good matches to the depth profiles. Estimated duration of lava effusion ranges from several months to a few years. These numerical results support thermal erosion of the sinuous rilles but do not necessarily exclude contributions from mechanical erosion processes. Valley networks seem to have formed under a strong structural control in comparison to sinuous rilles. The valleys vary widely in characteristics of the depth profile and flow directions relative to surface slopes. Therefore valley networks appear to have originated from diverse formation mechanisms.  相似文献   

7.
Baltis Vallis is a 6800-km long canali-type channel on Venus. Canali have a unique combination of morphological characteristics: extraordinary length, a single main conduit, and a degree of similarity to terrestrial rivers. These characteristics have given rise to intensive discussions on whether the origin of canali is erosional or constructional. Cross-sectional profiles of such channels reveal the detailed morphology of the structure and enable us to distinguish between these two possible origins; however, canali are just several kilometers wide and are therefore too small for the construction of cross-sectional profiles from Magellan altimetry data. Instead, we propose a new method for reconstructing short-wavelength topography using brightness data from Synthetic Aperture Radar images. We apply Muhleman's backscattering function to the backscatter intensity calculated from the brightness of Magellan Full-Resolution SAR Map images. The estimated vertical error of this new method is less than 5 m for a distance of 1 km across the channel. We studied 120 sites along an approximately 6000 km extent of Baltis Vallis. The channel profiles reveal that in nearly 90% of these sites, the bottom surface of the channel is lower than the surrounding plains by 20-100 m. Clear levee structures and intra-channel ridges are recognized in about 30 and 25%, respectively, of the sites analyzed within Baltis Vallis. Most of the levees occur in the upper segment of Baltis Vallis, while intra-channel ridges are mostly confined to the region between 1500 and 3000 km downstream from the probable source. The average depth and width of the channel are 46 m (standard deviation: 16 m) and 2.2 km (standard deviation: 0.4 km), respectively, and the depth profile along the channel is highly undulatory. The groove-like morphology and paucity of levee structures indicates an erosional origin. Furthermore, the observed undulations in depth along the channel indicate that Baltis Vallis most likely formed by mechanical erosion. The observed morphological transition from levees to intra-channel ridges suggests that the channel-forming processes changed across an area located approximately 1500 km from the source. Carbonatite is the most likely candidate material for the low-viscosity fluid that formed Baltis Vallis.  相似文献   

8.
Evidence of volcano-ground ice interactions on Mars can provide important constraints on the timing and distribution of martian volcanic processes and climate characteristics. Northwest of the Elysium Rise is Hrad Vallis, a ∼370 m deep, 800 km long sinuous valley that begins in a source region at 34° N, 218° W. Flanking both sides of the source region is a lobate deposit that extends ∼50 km perpendicular from the source and is an average of ∼40 m thick. Previous studies have suggested the formation of the Hrad Vallis source region was the result of explosive magma-ice interaction and that the lobate deposit is a mudflow; here we use newly available MOLA, MOC, and THEMIS data to investigate the evidence supporting this hypothesis. Within the lobate deposit we have identified 12 craters with thermal infrared signatures and morphologies that are distinct from any other craters or depressions in the region. The thermally distinct craters are distinguished by their cool interiors surrounded by warm ejecta in the nighttime THEMIS IR data and warm interiors surrounded by cool ejecta in the daytime THEMIS IR data. The craters are typically 1100-1800 m in diameter (one crater is ∼2300 m across) and 30-40 m deep, but may be up to 70 m. The craters are typically circular and have central depressions (several with interior dune fill) surrounded by ∼1 to >6 concentric fracture sets. The distribution of the craters and their morphology suggests that they are likely the result of the interaction between a hot mudflow and ground ice.  相似文献   

9.
We present results of a campaign to map much of the Moon’s near side using the 12.6-cm radar transmitter at Arecibo Observatory and receivers at the Green Bank Telescope. These data have a single-look spatial resolution of about 40 m, with final maps averaged to an 80-m, four-look product to reduce image speckle. Focused processing is used to obtain this high spatial resolution over the entire region illuminated by the Arecibo beam. The transmitted signal is circularly polarized, and we receive reflections in both senses of circular polarization; measurements of receiver thermal noise during periods with no lunar echoes allow well-calibrated estimates of the circular polarization ratio (CPR) and the four-element Stokes vector. Radiometric calibration to values of the backscatter coefficient is ongoing. Radar backscatter data for the Moon provide information on regolith dielectric and physical properties, with particular sensitivity to ilmenite content and surface or buried rocks with diameter of about one-tenth the radar wavelength and larger.Average 12.6-cm circular polarization ratio (CPR) values for low- to moderate-TiO2 mare basalt deposits are similar to those of rough terrestrial lava flows. We attribute these high values to abundant few-centimeter diameter rocks from small impacts and a significant component of subsurface volume scattering. An outflow deposit, inferred to be impact melt, from Glushko crater has CPR values near unity at 12.6-cm and 70-cm wavelengths and thus a very rugged near-surface structure at the decimeter to meter scale. This deposit does not show radar-brightness variations consistent with levees or channels, and appears to nearly overtop a massif, suggesting very rapid emplacement. Deposits of similar morphology and/or radar brightness are noted for craters such as Pythagoras, Rutherfurd, Theophilus, and Aristillus. Images of the north pole show that, despite recording the deposition of Orientale material, Byrd and Peary craters do not have dense patterns of radar-bright ejecta from small craters on their floors. Such patterns in Amundsen crater, near the south pole, were interpreted as diagnostic of abundant impact melt, so the fraction of Orientale-derived melt in the north polar smooth plains, 1000 km farther from the basin center, is inferred to be much lower.  相似文献   

10.
We produced regional geologic maps of the Hi’iaka and Shamshu regions of Io’s antijovian hemisphere using Galileo mission data to assess the geologic processes that are involved in the formation of Io’s mountains and volcanic centers. Observations reveal that these regions are characterized by several types of volcanic activity and features whose orientation and texture indicate tectonic activity. Among the volcanic features are multiple hotspots and volcanic vents detected by Galileo, one at each of the major paterae: Hi’iaka, Shamshu, and Tawhaki. We mapped four primary types of geologic units: flows, paterae floors, plains, and mountains. The flows and patera floors are similar, but are subdivided based upon emplacement environments and mechanisms. The floors of Hi’iaka and Shamshu Paterae have been partially resurfaced by dark lava flows, although portions of the paterae floors appear bright and unchanged during the Galileo mission; this suggests that the floors did not undergo complete resurfacing as flooding lava lakes. However, the paterae do contain compound lava flow fields and show the greatest activity near the paterae walls, a characteristic of Pele type lava lakes. Mountain materials are tilted crustal blocks that exhibit varied degrees of degradation. Lineated mountains have characteristic en echelon grooves that likely formed as a result of gravitational sliding. Undivided mountains are partially grooved but exhibit evidence of slumping and are generally lower elevation than the lineated units. Debris lobes and aprons are representative of mottled mountain materials. We have explored the possibility that north and south Hi’iaka Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units and created a depression which, by further extension during the rifting event, became Hi’iaka Patera. This type of rifting and depression formation is similar to the mechanism of formation of terrestrial pull-apart basins. With comparison to other regional maps of Io and global studies of paterae and mountains, this work provides insight into the general geologic evolution of Io.  相似文献   

11.
Emplacement of the youngest flood lava on Mars: A short, turbulent story   总被引:1,自引:0,他引:1  
Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision.  相似文献   

12.
Arnus Vallis (AV) is a >300-km-long sinuous, rille located on the northeastern flank of the Syrtis Major volcano on Mars. Observational evidence presented here suggests that AV formed as an open lava channel that was at least partly incised into the pre-existing terrain. The lava source area consists of a sub-circular pit at the southwestern end of a 7-km-long straight section of channel. AV trends down slope from this source with an average bottom slope of 0.26% or 0.14°. Width varies from ∼1 km at the source to ∼0.6 km near the distal end, with a mean of 0.76 km. Depth decreases from ∼180 m at the source to ∼25 m near the distal end. The AV terminus is obscured by a large impact crater. We suggest that the material that flowed in AV must have been a relatively high temperature, low viscosity lava dynamically and perhaps compositionally similar to terrestrial komatiite or some lunar basalt lavas. If correct, this finding has implications for the mode of construction of Syrtis Major.  相似文献   

13.
The origin of the martian chaotic terrains is still uncertain; and a variety of geologic scenarios have been proposed. We provide topographic profiles of different chaos landscapes, notably Aureum and Hydraotes Chaos, showing that an initial shallow ground subsidence occurred at the first step of the chaos formation. We infer that the subsidence was caused by intrusion of a volcanic sill; which could have produced consequent melting as well as release of ground water from disrupted aquifer. Signs of a volcanic activity are observed on the floor of Hydraotes Chaos, a complex and deep depression located at the junction of three channels. The volcanic activity is represented by small, 0.5 to 1.5 km diameter, rounded cones with summit pits. The cone's size and morphology, as well as the presence of possible surrounding lava flows, suggest that they are primary volcanic cones similar to terrestrial cinder cones. The identification of volcanic activity on the deepest chaos, where the lower crustal thickness and the faults/fractures system contributed to the magma rising, reveals that magmatic activity, proved by the cones, and possibly help by structural activity, has been a major factor in the formation of chaotic terrains.  相似文献   

14.
The SMART-1 lunar impact   总被引:1,自引:0,他引:1  
The SMART-1 spacecraft impacted the Moon on 3rd September 2006 at a speed of 2 km s−1 and at a very shallow angle of incidence (∼1°). The resulting impact crater is too small to be viewed from the Earth; accordingly, the general crater size and shape have been determined here by laboratory impact experiments at the same speed and angle of incidence combined with extrapolating to the correct size scale to match the SMART-1 impact. This predicts a highly asymmetric crater approximately 5.5-26 m long, 1.9-9 m wide, 0.23-1.5 m deep and 0.71-6.9 m3 volume. Some of the excavated mass will have gone into crater rim walls, but 0.64-6.3 m3 would have been ejecta on ballistic trajectories corresponding to a cloud of 2200-21,800 kg of lunar material moving away from the impact site. The shallow Messier crater on the Moon is similarly asymmetric and is usually taken as arising from a highly oblique impact. The light flash from the impact and the associated ejecta plume were observed from Earth, but the flash magnitude was not obtained, so it is not possible to obtain the luminous efficiency of the impact event.  相似文献   

15.
In the western hemisphere of Mars Amazonian volcanism from Arsia Mons produced the smooth surfaces of Daedalia Planum and masks older rocks. Close to the southern termination of Daedalia Planum basement rocks are exposed in which are preserved craters that escaped or were only partially filled by this most recent volcanism. Pickering Crater is an approximately 130 km diameter crater. The youngest lavas flowed into this crater from Daedalia Planum by way of a NW rim breach, covering its western part. East of a well-defined flow front an older lava sequence with a distinctive platy surface and derived from a more proximal unestablished source to the northeast is exposed. Several units are identified within this sequence on the basis of surface texture, which is more subdued in progressively older rocks. Only local mapping of the flow front boundaries of these units is possible because of incomplete coverage by high resolution imagery. During emplacement of the older lavas a NE-SW striking en echelon graben system and parallel smaller troughs and dikes formed under inferred regional NW-SE extension. A much earlier strike-slip regime pre-dating the lavas exposed in the crater floor is postulated, based on the highly fretted nature of the rim of Pickering Crater and an elongated smaller crater to its northeast, approximately 40 km long in the NE-SW direction. The rims of these craters contrast with that of a smoother rimmed impact crater in the southeast that was excavated subsequent to strike-slip deformation but prior to the emplacement of platy surfaced lavas.  相似文献   

16.
Geophysical data have led to the interpretation that Beta Regio, a 2000×25000 km wide topographic rise with associated rifting and volcanism, formed due to the rise of a hot mantle diapir interpreted to be caused by a mantle plume. We have tested this hypothesis through detailed geologic mapping of the V-17 quadrangle, which includes a significant part of the Beta Regio rise, and reconnaissance mapping of the remaining parts of this region. Our analysis documents signatures of an early stage of uplift in the formation of the Agrona Linea fracture belts before the emplacement of regional plains and their deformation by wrinkle ridging. We see evidence that the Theia rift-associated volcanism occurred during the first part of post-regional-plains time and cannot exclude that it continued into later time. We also see evidence that Devana Chasma rifting was active during the first and the second parts of post-regional-plains time. These data are consistent with uplift, rifting and volcanism associated with a mantle diapir. Geophysical modeling shows that diapiric upwelling may continue at the present time. Together these data suggest that the duration of mantle diapir activity was as long as several hundred million years. The regional plains north of Beta rise and the area east and west of it were little affected by the Beta-forming plume, but the broader area (at least 4000 km across), whose center-northern part includes Beta Regio, could have experienced earlier uplift as morphologically recorded in formation of tessera transitional terrain.  相似文献   

17.
The quantitative measurement of surface roughness of planetary surfaces at all scales provides insights into geological processes. A characterization of roughness variations at the scale of a few tens of meters is proposed that complements the analysis of local topographic data of the martian surface at kilometer scale, as achieved from the Mars Orbiter Laser Altimeter (MOLA) data, and at the subcentimeter scale using photometric properties derived from multi-angular observations. Relying on a Gabor filtering process, an algorithm developed in the context of image classification for the purpose of texture analysis has been adapted to handle data from the High Resolution Stereo Camera (HRSC). The derivation of roughness within a wavelength range of tens of meters, combined with analyses at even longer wavelengths, gives an original view of the martian surface. The potential of this approach is evaluated for different examples for which the geological processes are identified and the geological units are mapped and characterized in terms of roughness.  相似文献   

18.
Distributions of boulders ejected from lunar craters   总被引:1,自引:0,他引:1  
We investigate the spatial distributions of boulders ejected from 18 lunar impact craters that are hundreds of meters in diameter. To accomplish this goal, we measured the diameters of 13,955 ejected boulders and the distance of each boulder from the crater center. Using the boulder distances, we calculated ejection velocities for the boulders. We compare these data with previously published data on larger craters and use this information to determine how boulder ejection velocity scales with crater diameter. We also measured regolith depths in the areas surrounding many of the craters, for comparison with the boulder distributions. These results contribute to understanding boulder ejection velocities, to determining whether there is a relationship between the quantity of ejected boulders and lunar regolith depths, and to understanding the distributions of secondary craters in the Solar System. Understanding distributions of blocky ejecta is an important consideration for landing site selection on both the Moon and Mars.  相似文献   

19.
Distinct competent layers are observed in the slopes of eastern Coprates Chasma, part of the Valles Marineris system on Mars. Our observations indicate that the stratigraphy of Coprates Chasma consists of alternating thin strong layers and thicker sequences of relatively weak layers. The strong, competent layers maintain steeper slopes and play a major role in controlling the overall shape and geomorphology of the chasmata slopes. The topmost competent layer in this area is well preserved and easy to identify in outcrops on the northern rim of Coprates Chasma less than 100 m below the southern Ophir Planum surface. The volume of the topmost emplaced layer is at least 70 km3 and may be greater than 2100 km3 if the unit underlies most of Ophir Planum. The broad extent of this layer allows us to measure elevation offsets within the north rim of the chasma and in a freestanding massif within Coprates Chasma where the layer is also observed. Rim outcrop morphology and elevation differences between Ophir and Aurorae Plana may be indicative of the easternmost extent of the topmost competent layer. These observations allow an insight into the depositional processes that formed the stratigraphic stack into which this portion of the Valles Marineris is carved, and they present a picture of some of the last volcanic activity in this area. Furthermore, the elevation offsets within the layer are evidence of significant subsidence of the massif and surrounding material.  相似文献   

20.
Using images from the Mars Orbiter Camera, we have identified several linear ridges located 10-60 km north of the volcano Olympus Mons, Mars, at the edge of the Olympus Mons aureole materials. These ridges appear to be made of unconsolidated material by virtue of the many dust avalanche scars seen on their upper slopes. Based upon their morphology (several ridges have crater-like central depressions) and superposition relationships, the ridges appear to have formed very recently and post-date the formation of the youngest lava flows spilling over the northern escarpment of Olympus Mons. Several possible origins for the ridges, including an eolian, periglacial, or depositional origin have been considered, but we favor a ridge origin by a series of small explosive eruptions initiated by the intrusion of a dike into a volatile-rich substrate. To explore this process, we develop a numerical model for dike intrusion into a volatile-rich substrate that yields plausible dike widths between 2.4-3.5 m. The total volume of a single ridge system is ∼65×106 m3, and we calculate that it may have taken only a few minutes to form. Viable solutions only exist when the thicknesses of the ice-rich layer is less than ∼1000-2000 m. This strongly suggests that the ice-rich region is limited in its vertical extent to a value of this order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号