首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protoatmospheres and surface environment of terrestrial protoplanets during the oligarchic accretion phase and the giant impacts phase are discussed from theoretical points of view. Mars-sized protoplanets form during the stage of the oligarchic growth. Since protoplanets are formed from more or less ‘local’ planetesimals, the surface environment of the accreting protoplanets depends on availability of volatile material in planetesimals. Even if no volatile-bearing planetesimals are available, a gravitationary captured solar composition atmosphere is formed during accretion. In such cases the surface temperature is always kept under the melting temperature of mantle silicate and only a subsurface magma ocean is formed. Core formation proceeds under dry conditions, and volatile elements are not partitioned into metallic iron. Accretion of water-bearing planetesimals results in impact degassing. A surface hydrous magma ocean forms in response to the thermal blanketing effect of the proto-atmosphere. Then, some volatile materials dissolve into the magma ocean. If we consider reaction with metallic iron, the proto-atmosphere is likely to be rich in hydrogen. In addition, a large amount of hydrogen may be partitioned into metallic iron under high pressure, and delivered to the core. In the stage of giant impacts, both dry and water-bearing protoplanets collide on the proto-Earth. Substantial amount of proto-atmosphere (including water vapor) survives giant impacts. Moreover, giant impacts on protoplanets with oceans result in relative concentration of water against other gases.  相似文献   

2.
Terrestrial planets, with silicate mantles and metallic cores, are likely to obtain water and carbon compounds during accretion. Here I examine the conditions that allow early formation of a surface water ocean (simultaneous with cooling to clement surface conditions), and the timeline of degassing the planetary interior into the atmosphere. The greatest fraction of a planet’s initial volatile budget is degassed into the atmosphere during the end of magma ocean solidification, leaving only a small fraction of the original volatiles to be released into the atmosphere through later volcanism. Rocky planets that accrete with water in their bulk mantle have two mechanisms for producing an early water ocean: First, if they accrete with at least 1 to 3 mass% of water in their bulk composition, liquid water may be extruded onto the planetary surface at the end of magma ocean solidification. Second, at initial water contents as low as 0.01 mass% or lower, during solidification a massive supercritical fluid and steam atmosphere is produced that collapses into a water ocean upon cooling. The low water contents required for this process indicate that rocky super-Earth exoplanets may be expected to commonly produce water oceans within tens to hundreds of millions of years of their last major accretionary impact, through collapse of their atmosphere.  相似文献   

3.
The origin of water in the inner Solar System is not well understood. It is believed that temperatures were too high in the accretion disk in the region of the terrestrial planets for hydrous phases to be thermodynamically stable. Suggested sources of water include direct adsorption of hydrogen from the nebula into magma oceans after the terrestrial planets formed, and delivery of asteroidal or cometary material from beyond the zone of the terrestrial planets. We explore a new idea, direct adsorption of water onto grains prior to planetary accretion. This hypothesis is motivated by the observation that the accretion disk from which our planetary system formed was composed of solid grains bathed in a gas dominated by hydrogen, helium, and oxygen. Some of that hydrogen and oxygen combined to make water vapor. We examine quantitatively adsorption of water onto grains in the inner Solar System accretion disk by exploring the adsorption dynamics of water molecules onto forsterite surfaces via kinetic Monte Carlo simulations. We conclude that many Earth oceans of water could be adsorbed.  相似文献   

4.
The model in which the differences of chemical composition of the terrestrial planets are determined by special conditions at the later stage accumulation is discussed. Impact heating would rapidly lead to differentiation of Mercury's interiors. Subsequent high-velocity collisions of Mercury with planetesimals of a comparable size would erode away much of the silicate crust and mantle; such silicates would be accumulated by Venus and fall into the Sun. This model is in agreement with the current models of the terrestrial planets internal constitution.  相似文献   

5.
Jade C. Bond  Dante S. Lauretta 《Icarus》2010,205(2):321-19170
No terrestrial planet formation simulation completed to date has considered the detailed chemical composition of the planets produced. While many have considered possible water contents and late veneer compositions, none have examined the bulk elemental abundances of the planets produced as an important check of formation models. Here we report on the first study of this type. Bulk elemental abundances based on disk equilibrium studies have been determined for the simulated terrestrial planets of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58]. These abundances are in excellent agreement with observed planetary values, indicating that the models of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58] are successfully producing planets comparable to those of the Solar System in terms of both their dynamical and chemical properties. Significant amounts of water are accreted in the present simulations, implying that the terrestrial planets form “wet” and do not need significant water delivery from other sources. Under the assumption of equilibrium controlled chemistry, the biogenic species N and C still need to be delivered to the Earth as they are not accreted in significant proportions during the formation process. Negligible solar photospheric pollution is produced by the planetary formation process. Assuming similar levels of pollution in other planetary systems, this in turn implies that the high metallicity trend observed in extrasolar planetary systems is in fact primordial.  相似文献   

6.
系外类地行星是目前搜寻地外生命的主要目标.随着观测仪器的发展,现在已经能探测到低于10个地球质量的系外行星.该文简要回顾了系外类地行星的形成与演化,介绍了当前研究它们内部结构的模型和方法,以及由此得出的类地行星质量-半径关系.同时,对应不同的行星初始物质成分,讨论了各种可能的大气结构.最后介绍了未来的空间任务在相关方面的工作.  相似文献   

7.
Among the terrestrial planets, Mercury's composition is characterized by two specific features: a high density and a low surface FeO content. Based on these two constraints, different geochemical models have been proposed, according to different formation scenarios. Here thermodynamical modeling is used to derive the mantle and crust mineralogy associated with these geochemical models. For each mineralogy, the electrical conductivity profile and associated electromagnetic data are computed. Due to the very different oxide/silicate ratios, most geochemical models proposed for Mercury's formation show very different electromagnetic signatures. As a result, future measurements with MESSENGER and BepiColombo missions will help differentiating between different interior models and different formation scenarios.  相似文献   

8.
Abstract— Asteroid differentiation was driven by a complex array of magmatic processes. This paper summarizes theoretical and somewhat speculative research on the physics of these processes. Partial melts in asteroids migrate rapidly, taking < 106 years to reach surface regions. On relatively small (<100 km) asteroids with sufficient volatiles in partial melts (<3000 ppm), explosive volcanism accelerated melts to greater than escape velocity, explaining the apparent lack of basaltic components on the parent asteroids of some differentiated meteorites. Partial melting products include the melts (some eucrites, angrites), residues (lodranites, ureilites), and unfractionated residues (acapulcoites). The high liquidus temperatures of magmatic iron meteorites, the existence of pallasites with only olivine, and the fact that enstatite achondrites formed from ultramafic magmas argue for the existence of magma oceans on some asteroids. Asteroidal magma oceans would have been turbulently convective. This would have prevented crystals nucleated at the upper cooling surface (the only place for crystal nucleation in a low-pressure body) from settling until the magma became choked with crystals. After turbulent convection slowed, crystals and magma would have segregated, leaving a body stratified from center to surface as follows: a metallic core, a small pallasite zone, a dunite region, a feldspathic pyroxenite, and basaltic intrusions and lava flows (if the basaltic components had not been lost by explosive volcanism). The pallasite and dunite zones probably formed from coarse (0.5–1 cm) residual olivine left after formation of the magma ocean at >50% partial melting of the silicate assemblage. Iron cores crystallized dendritically from the outside to the inside. The rapid melt migration rate of silicate melts suggests that 26Al could not be responsible for forming asteroidal magma oceans because it would leave the interior before a sufficient amount of melting occurred. Other heat sources are more likely candidates. Our analysis suggests that if Earth-forming planetesimals had differentiated they were either small (<100 km) and poor in volatiles (<1000 ppm) or they were rich in volatiles and large enough (>300 km) to retain the products of pyroclastic eruptions; if these conditions were not met, Earth would not have a basaltic component.  相似文献   

9.
Volatile element concentrations in planets are controlled by many factors such as precursor material composition, core formation, differentiation, magma ocean and magmatic degassing, and late accretionary processes. To better constrain the role of core formation, we report new experiments defining the effect of temperature, and metallic S and C content on the metal-silicate partition coefficient (or D(i) metal/silicate) of the volatile siderophile elements (VSE) Bi, Cd, In, and Sn. Additionally, the effect of pressure on metal-silicate partitioning between 1 and 3 GPa, and olivine-melt partitioning at 1 GPa have been studied for Bi, Cd, In, Sn, As, Sb, and Ge. Temperature clearly causes a decrease in D(i) metal/silicate for all elements. Sulfur and C have a large influence on activity coefficients in metallic Fe liquids, with C causing a decrease in D(i) metal/silicate, and S causing an increase. Pressure has only a small effect on D(Cd), D(In), and D(Ge) metal/silicate. Depletions of Bi, Cd, In, and Sn in the terrestrial and Martian mantles are consistent with high PT core formation and metal-silicate equilibrium at the high temperatures indicated by previous studies. A late Hadean matte would influence Bi the most, due to its high D(sulfide/silicate) ~2000, but segregation of a matte would only reduce the mantle Bi content by 50%; all other less chalcophile elements (e.g., Sn, In, and Cd) would be minimally affected. The lunar depletions of highly VSE require a combination of core formation and an additional depletion mechanism—most likely the Moon-forming giant impact, or lunar magma ocean degassing.  相似文献   

10.
Hauke Hussmann  Frank Sohl 《Icarus》2006,185(1):258-273
The detection of induced magnetic fields in the vicinity of the jovian satellites Europa, Ganymede, and Callisto is one of the most surprising findings of the Galileo mission to Jupiter. The observed magnetic signature cannot be generated in solid ice or in silicate rock. It rather suggests the existence of electrically conducting reservoirs of liquid water beneath the satellites' outermost icy shells that may contain even more water than all terrestrial oceans combined. The maintenance of liquid water layers is closely related to the internal structure, composition, and thermal state of the corresponding satellite interior. In this study we investigate the possibility of subsurface oceans in the medium-sized icy satellites and the largest trans-neptunian objects (TNO's). Controlling parameters for subsurface ocean formation are the radiogenic heating rate of the silicate component and the effectiveness of the heat transfer to the surface. Furthermore, the melting temperature of ice will be significantly reduced by small amounts of salts and/or incorporated volatiles such as methane and ammonia that are highly abundant in the outer Solar System. Based on the assumption that the satellites are differentiated and using an equilibrium condition between the heat production rate in the rocky cores and the heat loss through the ice shell, we find that subsurface oceans are possible on Rhea, Titania, Oberon, Triton, and Pluto and on the largest TNO's 2003 UB313, Sedna, and 2004 DW. Subsurface oceans can even exist if only small amounts of ammonia are available. The liquid subsurface reservoirs are located deeply underneath an ice-I shell of more than 100 km thickness. However, they may be indirectly detectable by their interaction with the surrounding magnetic fields and charged particles and by the magnitude of a satellite's response to tides exerted by the primary. The latter is strongly dependent on the occurrence of a subsurface ocean which provides greater flexibility to a satellite's rigid outer ice shell.  相似文献   

11.
Compared with the other terrestrial planets, Mercury has anomalously low mass and high iron content. Equilibrium condensation and inhomogeneous accretional models are not compatible with these properties, unless the solar nebula's thermal structure and history meet stringent conditions. Also, such models predict a composition which does not allow a presently molten core. It appears that most of the solid matter which originally condensed in Mercury's zone has been removed. The planet's composition may be explained if the removal process was only slightly more effective for silicates than for iron. It is proposed that planetesimal orbits in the inner solar nebula decayed because of gas drag. This process is a natural consequence of the non-Keplerian rotation of a centrally condensed nebula. A simple quantitative model shows good agreement with the observed mass distribution of the terrestrial planets. The rate of orbital decay is slower for larger and/or denser bodies, because of their smaller area-to-mass ratios. With plausible assumptions as to planetesimal sizes and compositions, this process can produce fractionation of the sense required to produce an iron-rich planet. Cosmogonical implications are discussed.  相似文献   

12.
Some aspects and consequences of the theory of gravitational accretion of the terrestrial planets are examined. The concept of a “closed feeding zone” is somewhat unrealistic, but provides a lower bound on the accretion time. Safronov's relative velocity relation for planetesimals is not entirely consistent with the feeding zone model. A velocity relation which includes an initial velocity component is suggested. The orbital parameters of the planetesimals and the dimensions of the feeding zone are related to their relative velocities. The assumption of an initial velocity does not seriously change the accretion time.Mercury, Venus, and the Earth have accretion times on the order of 108yr. Mars requires well over 109yr to accrete by the same assumptions. Currently available data do not rule out a late formation of Mars, but the lunar cratering history makes it unlikely. If Mars is as old as the Earth, nongravitational forces or a violation of the feeding zone concept is required. One such possibility is the removal of matter from the zone of Mars by Jupiter's influence. The final sweeping up by Mars after this event would result in the scattering of a considerable mass among the other terrestrial planets. The late postaccretional bombardments infrerred for the Moon and Mercury may have had this source.  相似文献   

13.
J.G. Hills 《Icarus》1973,18(3):505-522
The physically reasonable assumption that the seed bodies which initiated the accretion of the individual asteroids, planets, and comets (subsequently these objects are collectively called planetoids) formed by stochastic processes requires a radius distribution function which is unique except for two scaling parameters: the total number of planetoids and their most probable radius. The former depends on the ease of formation of the seed bodies while the second is uniquely determined by the average pre-encounter velocity, V, of the accretable material relative to an individual planetoid. This theoretical radius function can be fit to the initial asteroid radius distribution which Anders (1965) derived from the present-day distribution by allowing for fragmentation collisions among the asteroids since their formation. Normalizing the theoretical function to this empirical distribution reveals that there were about 102 precollision asteroids and that V = (2?4) × 10?2 km/sec which was presumably the turbulent velocity in the Solar Nebula. Knowing V we can determine the scale height of the dust in the Solar Nebula and consequently its space density. The density of accretable material determines the rate of accretion of the planetoids. From this we find, for example, that the Earth formed in about 8 × 106 yr and it attained a maximum temperature through accretion of about 3 × 103°K. From the total mass of the terrestrial planets and the theoretical radius function we find that about 2 × 103 planetoids formed in the vicinity of the terrestrial planets. Except for the asteroids the smaller planetoids have since been accreted by the terrestrial planets. About 15% of the present mass of the terrestrial planets was accumulated by the secondary accretion of these smaller primary planetoids. There are far fewer primary planetoids than craters on the Moon or Mars. The craters were likely produced by the collisional breakup of a few primary planetoids with masses between one-tenth and one lunar mass. This deduction comes from comparing the collision cross sections of the planetoids in this mass range to that of the terrestrial planets. This comparison shows that two to three collisions leading to the breakup of four to six objects likely occurred among these objects before their accretion by the terrestrial planets. The number of these fragments is quite adequate to explain the lunar and Martin craters. Furthermore the mass spectrum of such fragments is a power-law distribution which results in a power-law distribution of crater radii of just the type observed on the Moon and Mars. Applying the same analysis to the planetoids which formed in the vicinity of the giant planets reveals that it is unlikely that any fragmentation collisions took place among them before they were accreted by these planets due to the integrated collision cross section of the giant planets being about three orders of magnitude greater than that of the terrestrial planets. We can thus anticipate a marked scarcity of impact craters on the satellites of these outer planets. This prediction can be tested by future space probes. Our knowledge of the radius function of the comets is consistent with their being primary planetoids. The primary difference between the radius function of the planetoids which formed in the inner part of the solar system and that of the comets results from the fact that the seed bodies which grew into the comets formed far more easily than those which grew into the asteroids and the terrestrial planets. Thus in the outer part of the Solar Nebula the principal solid material (water and ammonia snow) accreted into a huge (~1012+) number of relatively small objects (comets) while in the inner part of the nebula the solid material (hard-to-stick refractory substances) accumulated into only a few (~103) large objects (asteroids and terrestrial planets). Uranus and Neptune presumably formed by the secondary accretion of the comets.  相似文献   

14.
Models of giant gaseous protoplanets calculated by DeCampli and Cameron (1979) indicate that iron and probably other minerals in the interior of a planet would be in the liquid state during part of the protoplanet evolution. Liquid drops in a protoplanet would grow by coalescence much as cloud drops in the Earth's atmosphere grow to rain drops. We have modeled this process by using the stochastic collection equation (Slattery, 1978) for various initial conditions. In all of the cases considered, the growth time (to centimeter-sized droplets) is much shorter than the time, as estimated by detailed evolutionary calculations, that the drops are in the liquid state. Brownian collection is effective in quickly coalescing tiny liquid droplets to an average radius of about 0.005 cm with very few drops remaining with radii less than 0.001 cm. For radii larger than 0.005 cm gravitational collection is dominant. Since the particles are rapidly swept from interstellar grain sizes to much larger sizes, the opacity in the cloud layer is expected to drop sharply following melting of the grains.  相似文献   

15.
Abstract— I examine the origin of water in the terrestrial planets. Late‐stage delivery of water from asteroidal and cometary sources appears to be ruled out by isotopic and molecular ratio considerations, unless either comets and asteroids currently sampled spectroscopically and by meteorites are unlike those falling to Earth 4.5 Ga ago, or our measurements are not representative of those bodies. However, the terrestrial planets were bathed in a gas of H, He, and O. The dominant gas phase species were H2, He, H2 O, and CO. Thus, grains in the accretion disk must have been exposed to and adsorbed H2 and water. Here I conduct a preliminary analysis of the efficacy of nebular gas adsorption as a mechanism by which the terrestrial planets accreted “wet.” A simple model suggests that grains accreted to Earth could have adsorbed 1‐3 Earth oceans of water. The fraction of this water retained during accretion is unknown, but these results suggest that examining the role of adsorption of water vapor onto grains in the accretion disk bears further study.  相似文献   

16.
Anthony Mallama 《Icarus》2009,204(1):11-499
The empirically derived phase curves of terrestrial planets strongly distinguish between airless Mercury, cloud-covered Venus, and the intermediate case of Mars. The function for Mercury is steeply peaked near phase angle zero due to powerful backscattering from its surface, while that for Venus has 100 times less contrast and exhibits a brightness excess near 170° due to Mie scattering from droplets in the atmosphere. The phase curve of Mars falls between those of Mercury and Venus, and there are variations in luminosity due to the planet’s rotation, seasons, and atmospheric states. The phase function and geometric albedo of the Earth are estimated from published albedos values. The curves for Mercury, Venus and Mars are compared to that of the Earth as well as theoretical phase functions for giant planets. The parameters of these different phase functions can be used to characterize exoplanets.  相似文献   

17.
We present results from 44 simulations of late stage planetary accretion, focusing on the delivery of volatiles (primarily water) to the terrestrial planets. Our simulations include both planetary “embryos” (defined as Moon to Mars sized protoplanets) and planetesimals, assuming that the embryos formed via oligarchic growth. We investigate volatile delivery as a function of Jupiter's mass, position and eccentricity, the position of the snow line, and the density (in solids) of the solar nebula. In all simulations, we form 1-4 terrestrial planets inside 2 AU, which vary in mass and volatile content. In 44 simulations we have formed 43 planets between 0.8 and 1.5 AU, including 11 “habitable” planets between 0.9 and 1.1 AU. These planets range from dry worlds to “water worlds” with 100+oceans of water (1 ocean=1.5×1024 g), and vary in mass between 0.23M and 3.85M. There is a good deal of stochastic noise in these simulations, but the most important parameter is the planetesimal mass we choose, which reflects the surface density in solids past the snow line. A high density in this region results in the formation of a smaller number of terrestrial planets with larger masses and higher water content, as compared with planets which form in systems with lower densities. We find that an eccentric Jupiter produces drier terrestrial planets with higher eccentricities than a circular one. In cases with Jupiter at 7 AU, we form what we call “super embryos,” 1-2M protoplanets which can serve as the accretion seeds for 2+M planets with large water contents.  相似文献   

18.
G.S. Golitsyn 《Icarus》1979,38(3):333-341
A short review of the atmospheric dynamics for the outer planets and some of their satellites with atmospheres is presented. Their physical properties are discussed. A survey of observational data for atmospheric motions on the large planets is presented and similarity parameters are given for all objects. General problems of the vertical structure of atmospheres are then considered with some detailed discussion for rarefied atmospheres on Io and Ganymede. The low densities of these atmospheres make their dynamics similar to those of the thermospheres of the terrestrial planets but with a specific boundary layer. The atmospheric temperature regime must be strongly coupled to that of their surface, and so winds should be of the order of the velocity of sound. Similarities and differences are noted between the dynamics of Titan and possibly of Pluto and the circulation on Venus. For large and rapidly rotating planets, some analogies with the oceans are pointed out. The “soliton” hypothesis is discussed in some detail for circulation perturbations observed on Jupiter's disk. Finally, it is noted that the bimodal rotation period found for Neptune [D.P. Cruikshank, Astrophys. J. 220, 157–159 (1978)] may be interpreted as an indication of an equatorial jet on the planet with a relative velocity of about 140 m sec?1.  相似文献   

19.
Abstract— Crystallization of a magma ocean on a large terrestrial planet that is significantly melted by the energy of accretion may lead to an unstable cumulate density stratification, which may overturn to a stable configuration. Overturn of the initially unstable stratification may produce an early basaltic crust and differentiated mantle reservoirs. Such a stable compositional stratification can have important implications for the planet's subsequent evolution by delaying or suppressing thermal convection and by influencing the distribution of radiogenic heat sources. We use simple models for fractional crystallization of a martian magma ocean, and calculate the densities of the resulting cumulates. While the simple models presented do not include all relevant physical processes, they are able to describe to first order a number of aspects of martian evolution. The models describe the creation of magma source regions that differentiated early in the history of Mars, and present the possibility of an early, brief magnetic field initiated by cold overturned cumulates falling to the coremantle boundary. In a model that includes the density inversion at about 7.5 GPa, where olivine and pyroxene float in the remaining magma ocean liquids while garnet sinks, cumulate overturn sequesters alumina in the deep martian interior. The ages and compositions of source regions are consistent with SNC meteorite data.  相似文献   

20.
Sean N. Raymond  Thomas Quinn 《Icarus》2005,177(1):256-263
‘Hot jupiters,’ giant planets with orbits very close to their parent stars, are thought to form farther away and migrate inward via interactions with a massive gas disk. If a giant planet forms and migrates quickly, the planetesimal population has time to re-generate in the lifetime of the disk and terrestrial planets may form [P.J. Armitage, A reduced efficiency of terrestrial planet formation following giant planet migration, Astrophys. J. 582 (2003) L47-L50]. We present results of simulations of terrestrial planet formation in the presence of hot/warm jupiters, broadly defined as having orbital radii ?0.5 AU. We show that terrestrial planets similar to those in the Solar System can form around stars with hot/warm jupiters, and can have water contents equal to or higher than the Earth's. For small orbital radii of hot jupiters (e.g., 0.15, 0.25 AU) potentially habitable planets can form, but for semi-major axes of 0.5 AU or greater their formation is suppressed. We show that the presence of an outer giant planet such as Jupiter does not enhance the water content of the terrestrial planets, but rather decreases their formation and water delivery timescales. We speculate that asteroid belts may exist interior to the terrestrial planets in systems with close-in giant planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号