首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present a comparison between a plasma-generated 'starting jet' experiment and an axisymmetric numerical simulation of the flow. The experimental flow and the numerical simulation give results that agree both qualitatively and quantitatively, showing that the complex vortical structures arising in the flow are surprisingly well reproduced by the numerical model. This result inspires confidence in the accuracy of astrophysical jet numerical simulations. Also, even though the Mach number of our laboratory jet is somewhat low ( M ∼0.5), the dimensionless parameters of this jet are not very far from those expected for Faranoff–Riley class I radio jets.  相似文献   

3.
The goal of this contribution is not to describe results on accretion discs launching jets obtained within the self-similar framework. Rather, I would like (1) to emphasize the huge difficulties one has to face when attempting to perform magnetohydrodynamic (MHD) numerical simulations of such discs; (2) to show how self-similar solutions can help to solve these difficulties. In particular, they allow to choose suitable boundary conditions and/or relevant initial conditions. In all cases anyway, they provide a framework for understanding and testing the outcome of numerical simulations.  相似文献   

4.
Prominent in the 'Field of Streams'– the Sloan Digital Sky Survey map of substructure in the Galactic halo – is an 'Orphan Stream' without obvious progenitor. In this numerical study, we show a possible connection between the newly found dwarf satellite Ursa Major II (UMa II) and the Orphan Stream. We provide numerical simulations of the disruption of UMa II that match the observational data on the position, distance and morphology of the Orphan Stream. We predict the radial velocity of UMa II as −100 km s−1, as well as the existence of strong velocity gradients along the Orphan Stream. The velocity dispersion of UMa II is expected to be high, though this can be caused both by a high dark matter content or by the presence of unbound stars in a disrupted remnant. However, the existence of a gradient in the mean radial velocity across UMa II provides a clear-cut distinction between these possibilities. The simulations support the idea that some of the anomalous, young halo globular clusters like Palomar 1 or Arp 2 or Ruprecht 106 may be physically associated with the Orphan Stream.  相似文献   

5.
Numerical simulations of galaxy formation require a number of parameters. Some of these are intrinsic to the numerical integration scheme (e.g., the time-step), while others describe the physical model (e.g., the gas metallicity). In this paper we present results of a systematic exploration of the effects of varying a subset of these parameters on simulations of galaxy formation. We use N -body and 'Smoothed Particle Hydrodynamics' techniques to follow the evolution of cold dark matter and gas in a small volume. We compare a fiducial model with 24 different simulations, in which one parameter at a time is varied, focusing on properties such as the relative fraction of hot and cold gas, and the abundance and masses of galaxies. We find that for reasonable choices of numerical values, many parameters have relatively little effect on the galaxies, with the notable exception of the parameters that control the resolution of the simulation and the efficiency with which gas cools.  相似文献   

6.
The results of numerical simulations of a gaseous disk in the potential of a stellar spiral density wave are presented. The conditions under which straightened spiral arm segments (rows) form in the gas component are studied. These features of the spiral structure were identified in a series of works by A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a wide range of model parameters: the pitch angle of the spiral pattern, the amplitude of the stellar spiral density wave, the disk rotation speed, and the temperature of the gas component. The results of 2D- and 3D-disk simulations are compared. The rows in the numerical simulations are shown to be an essentially nonstationary phenomenon. A statistical analysis of the distribution of geometric parameters for spiral patterns with rows in the observed galaxies and the constructed hydrodynamic models shows good agreement. In particular, the numerical simulations and observations of galaxies give 〈α〉 }~ 120° for the average angles between straight segments.  相似文献   

7.
Previous simulations of martian global dust storms with a simple low-order model showed the desired interannual variability of storms if one of the model parameters—the threshold wind speed for starting saltation and lifting dust from the surface—was finely tuned. In this paper we show that the fine-tuning of this parameter could be the result of negative feedback in which processes associated with global dust storms raise the threshold and small-scale processes like dust devils, which are active in years between the storms, lower the threshold.  相似文献   

8.
9.
The simplest model of a resonant problem of second order is the planar and circular case. Simplification like this is very old and for 3/1 resonance, several authors have studied this problem with different purposes. In this work, we test this model for the available asteroids, by applying Hori's perturbation method. Explicit solutions of the intermediate orbit are obtained. In the plane of two constants of the problem, all types of motion are described. By testing the model, it is shown that, in general, one can confirm results of numerical integrations indicating libration for a few number of asteroids and circulation for most of them. However, agreement in numerical values for amplitude and period of librations seems to be not possible mainly if Jupiter's eccentricity is neglected. On the other hand, even though there might be some physical reasons determining that only asteroids with high eccentricity may librate, it is shown that, from mathematical point of view, libration may occur even in the case of small eccentricities provided that some relations are satisfied.  相似文献   

10.
Abstract— In this paper, we present numerical simulations aimed at reproducing the Baptistina family based on its properties estimated by observations. A previous study by Bottke et al. (2007) indicated that this family is probably at the origin of the K/T impactor, is linked to the CM meteorites and was produced by the disruption of a parent body 170 km in size due to the head‐on impact of a projectile 60 km in size at 3 km s?1. This estimate was based on simulations of fragmentation of non‐porous materials, while the family was assumed to be of C taxonomic type, which is generally interpreted as being formed from a porous body. Using both a model of fragmentation of non‐porous materials, and a model that we developed recently for porous ones, we performed numerical simulations of disruptions aimed at reproducing this family and at analyzing the differences in the outcome between those two models. Our results show that a reasonable match to the estimated size distribution of the real family is produced from the disruption of a porous parent body by the head‐on impact of a projectile 54 km in size at 3 km s?1. Thus, our simulations with a model consistent with the assumed dark type of the family requires a smaller projectile than previously estimated, but the difference remains small enough to not affect the proposed scenario of this family history. We then find that the break‐up of a porous body leads to different outcomes than the disruption of a non‐porous one. The real properties of the Baptistina family still contain large uncertainties, and it remains possible that its formation did not involve the proposed impact conditions. However, the simulations presented here already show some range of outcomes and once the real properties are better constrained, it will be easy to check whether one of them provides a good match.  相似文献   

11.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

12.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The inclusion of a detailed modeling of the short-scale baryonic physics in a large-scale cosmological simulation is crucial for a better comparison between observations and predictions from cosmological models. From a set of 3D hydrodynamical simulations which include a chemical model to account for the complex physics of the ISM at a sub-grid scale, we have been able to obtain a statistically significant sample of galaxy-type halos with observational properties, like colors and luminosities for different cosmological scenarios. From this data base, we have studied a number of different things, like Tully-Fisher relations, luminosity functions and environmental effects. Despite the progress made during the last few years in the modeling of the physics of ISM and star formation, more work is clearly needed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We present a study of numerical effects in dissipationless cosmological simulations. The numerical effects are evaluated and studied by comparing the results of a series of 643-particle simulations of varying force resolution and number of time-steps, performed using three of the N -body techniques currently used for cosmological simulations: the Particle–Mesh (PM), the Adaptive Particle–Particle–Particle–Mesh (AP3M) and the newer Adaptive Refinement Tree (ART) codes. This study can therefore be interesting both as an analysis of numerical effects and as a systematic comparison of different codes.
We find that the AP3M and the ART codes produce similar results given that convergence is reached within the code type. We also find that numerical effects may affect the high-resolution simulations in ways that have not been discussed before. In particular, our study revealed the presence of two-body scattering, the effects of which can be greatly amplified by inaccuracies in time integration. This process appears to affect the correlation function of matter, the mass function, the inner density of dark matter haloes and other statistics at scales much larger than the force resolution, although different statistics may be affected in a different fashion. We discuss the conditions for which strong two-body scattering is possible and discuss the choice of the force resolution and integration time-step. Furthermore, we discuss recent claims that simulations with force softening smaller than the mean interparticle separation are not trustworthy and argue that this claim is incorrect in general, and applies only to the phase-sensitive statistics. Our conclusion is that, depending on the choice of mass and force resolution and the integration time-step, a force resolution as small as 0.01 of the mean interparticle separation can be justified.  相似文献   

15.
A numerical model is presented to simulate the influence function of deformable mirror actuators. The numerical model is formed by Bessel Fourier orthogonal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems.  相似文献   

16.
Using numerical techniques we study the global stability of cooling flows in X-ray luminous giant elliptical galaxies. As an unperturbed equilibrium state we choose the hydrostatic gas recycling model. Non-equilibrium radiative cooling, stellar mass loss, heating by type Ia supernovae, distributed mass deposition and thermal conductivity are included. Although the recycling model reproduces the basic X-ray observables, it appears to be unstable with respect to the development of inflow or outflow. In spherical symmetry the inflows are subject to a central cooling catastrophe, while the outflows saturate in a form of a subsonic galactic wind. Two-dimensional axisymmetric random velocity perturbations of the equilibrium model trigger the onset of a cooling catastrophe, which develops in an essentially non-spherical way. The simulations show a patchy pattern of mass deposition and the formation of hollow gas jets, which penetrate through the outflow down to the galaxy core. The X-ray observables of such a hybrid gas flow mimic those of the equilibrium recycling model, but the gas temperature exhibits a central depression. The mass deposition rate M ˙ consists of two contributions of similar size: (i) a hydrostatic one resembling that of the equilibrium model, and (ii) a dynamical one which is related to the jets and is more concentrated towards the centre. For a model galaxy, like NGC 4472, our 2D simulations predict M ˙ ≈ 2 M⊙ yr−1 within the cooling radius for the advanced non-linear stage of the instability. We discuss the implications of these results to Hα nebulae and star formation in cooling flow galaxies and emphasize the need for high-resolution 3D simulations.  相似文献   

17.
We use hydrocode modeling to investigate dynamic models for the collapse of the Chicxulub impact crater. Our aim is to integrate the results from numerical simulations with kinematic models derived from seismic reflection and wide-angle velocity data to further our understanding of the formation of large impact craters. In our simulations, we model the collapse of a 100-km diameter, bowl-shaped cavity formed in comprehensively fractured crustal material. To facilitate wholesale collapse, we require that the strength of the target be significantly weakened. In the present model, we achieve this using acoustic fluidization, where strong vibrations produced by the expanding shock wave cause extreme pressure fluctuations in the target. At times and positions where the overburden pressure is sufficiently counteracted, the frictional resistance is reduced, enabling the rock debris to flow. Our simulations produce a collapsed crater that contains most of the features that we observe in the seismic data at Chicxulub. In particular, we observe a topographic peak ring, formed as material that is originally part of the central uplift collapses outward and is thrust over the inwardly collapsing transient crater rim. This model for peak-ring generation has not been previously demonstrated by numerical simulations and predicts that the peak ring is composed of deeply derived material and that the stratigraphy within the peak ring is overturned.  相似文献   

18.
Using a suite of N -body simulations in different cold dark matter (CDM) scenarios, with cosmological constant (ΛCDM) and without (OCDM, SCDM), we study the Hubble flow (σH) in Local Volumes (LV) around Local Group (LG) like objects found in these simulations, and compare the numerical results with the most recent observations. We show that ΛCDM and OCDM models exhibit the same behaviour of σH. Hence, we demonstrate that the observed coldness of the Hubble flow is not likely to be a manifestation of the dark energy, contrary to previous claims. The coldness does not constitute a problem by itself but it poses a problem to the standard ΛCDM model only if the mean density within the LV is greater than twice the mean matter cosmic density. The lack of blueshifted galaxies in the LV, outside of the LG can be considered as another manifestation of the coldness of the flow. Finally, we show that the main dynamical parameter that affects the coldness of the flow is the relative isolation of the LG, and the absence of nearby Milky Way like objects within a distance of about  3 Mpc  .  相似文献   

19.
A two-dimensional model of radiative, dynamical and photochemical processes in the atmosphere has been developed and used for the simulation of ozone distribution. The results of numerical simulations are compared with LIARS and TOMS measurements. The comparison shows that the overall agreement between simulated and LIARS stratospheric ozone data is within 5–15% for almost all of the stratosphere except for the high latitudes of the winter hemisphere. This kind of disagreement is a common problem for all 2-D models, which cannot resonably reproduce planetary and gravity wave breaking processes over high latitudes. Validation of the simulated total ozone against TOMS data also shows a good overall agreement. The the total ozone difference between the 2-D model results and TOMS measurements is within 5–10% in both Northern and Southern hemispheres during all seasons except 40°S-60°S from June to October. In this region, the difference between simulated and TOMS total ozone is 30%.  相似文献   

20.
We present results of a fully non-local, compressible model of convection for A-star envelopes. This model quite naturally reproduces a variety of results from observations and numerical simulations which local models based on a mixing length do not. Our principal results, which are for models with T eff between 7200 and 8500 K, are the following. First, the photospheric velocities and filling factors are in qualitative agreement with those derived from observations of line profiles of A-type stars. Secondly, the He  ii and H  i convection zones are separated in terms of convective flux and thermal interaction, but joined in terms of the convective velocity field, in agreement with numerical simulations. In addition, we attempt to quantify the amount of overshooting in our models at the base of the He  ii convection zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号