共查询到20条相似文献,搜索用时 15 毫秒
1.
We estimate the impact flux and cratering rate as a function of latitude on the terrestrial planets using a model distribution of planet crossing asteroids and comets [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433]. After determining the planetary impact probabilities as a function of the relative encounter velocity and encounter inclination, the impact positions are calculated analytically, assuming the projectiles follow hyperbolic paths during the encounter phase. As the source of projectiles is not isotropic, latitudinal variations of the impact flux are predicted: the calculated ratio between the pole and equator is 1.05 for Mercury, 1.00 for Venus, 0.96 for the Earth, 0.90 for the Moon, and 1.14 for Mars over its long-term obliquity variation history. By taking into account the latitudinal dependence of the impact velocity and impact angle, and by using a crater scaling law that depends on the vertical component of the impact velocity, the latitudinal variations of the cratering rate (the number of craters with a given size formed per unit time and unit area) is in general enhanced. With respect to the equator, the polar cratering rate is about 30% larger on Mars and 10% on Mercury, whereas it is 10% less on the Earth and 20% less on the Moon. The cratering rate is found to be uniform on Venus. The relative global impact fluxes on Mercury, Venus, the Earth and Mars are calculated with respect to the Moon, and we find values of 1.9, 1.8, 1.6, and 2.8, respectively. Our results show that the relative shape of the crater size-frequency distribution does not noticeably depend upon latitude for any of the terrestrial bodies in this study. Nevertheless, by neglecting the expected latitudinal variations of the cratering rate, systematic errors of 20-30% in the age of planetary surfaces could exist between equatorial and polar regions when using the crater chronology method. 相似文献
2.
Planetary formation models predict the existence of massive terrestrial planets and experiments are now being designed that should succeed in discovering them and measuring their masses and radii. We calculate internal structures of planets with one to ten times the mass of the Earth (Super-Earths) to obtain scaling laws for total radius, mantle thickness, core size and average density as a function of mass. We explore different compositions and obtain a scaling law of R∝M0.267-0.272 for Super-Earths. We also study a second family of planets, Super-Mercuries with masses ranging from one mercury-mass to ten mercury-masses with similar composition to the Earth's but with a larger core mass fraction. We explore the effect of surface temperature and core mass fraction on the scaling laws for these planets. The scaling law obtained for the Super-Mercuries is R∝M∼0.3. 相似文献
3.
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ. 相似文献
4.
Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets 总被引:1,自引:0,他引:1
We used chemical equilibrium and chemical kinetic calculations to model chemistry of the volatiles released by heating different types of carbonaceous, ordinary and enstatite chondritic material as a function of temperature and pressure. Our results predict the composition of atmospheres formed by outgassing during accretion of the Earth and other terrestrial planets. Outgassing of CI and CM carbonaceous chondritic material produces H2O-rich (steam) atmospheres in agreement with the results of impact experiments. However, outgassing of other types of chondritic material produces atmospheres dominated by other gases. Outgassing of ordinary (H, L, LL) and high iron enstatite (EH) chondritic material yields H2-rich atmospheres with CO and H2O being the second and third most abundant gases. Outgassing of low iron enstatite (EL) chondritic material gives a CO-rich atmosphere with H2, CO2, and H2O being the next most abundant gases. Outgassing of CV carbonaceous chondritic material gives a CO2-rich atmosphere with H2O being the second most abundant gas. Our results predict that the atmospheres formed during accretion of the Earth and Mars were probably H2-rich unless the accreted material was dominantly CI and CM carbonaceous chondritic material. We also predict significant amounts of S, P, Cl, F, Na, and K in accretionary atmospheres at high temperatures (1500-2500 K). Finally, our results may be useful for interpreting spectroscopic observations of accreting extrasolar terrestrial planets. 相似文献
5.
P.L. Read 《Planetary and Space Science》2011,59(10):900-914
By the study of simple analogues, either in the form of simplified numerical models or laboratory experiments, considerable insights may be gained as to the likely roles of planetary size, rotation, thermal stratification and other factors in determining the principal length scales, styles of global circulation and dominant waves and instability processes active in the respective climate systems of Earth, Mars, Venus and Titan. In this review, we explore aspects of these analogues and demonstrate the importance of a number of key dimensionless parameters, most notably thermal Rossby and Rhines numbers and a measure of the dominant frictional or radiative timescale, in defining the type of circulation regime to be expected in a prototype planetary atmosphere subject to axisymmetric driving. These considerations help to place Mars, Venus, Titan and Earth into an appropriate context, and may also lay the foundations for predicting and understanding the climate and circulation regimes of (as yet undiscovered) Earth-like extra-solar planets. However, as recent discoveries of ‘super-Earth’ planets around some nearby stars are beginning to reveal, the parameter space determined from axisymmetrically forced prototype atmospheres may be incomplete and other factors, such as the possibility of tidally locked rotation and tidal forcing, may also need to be taken into account for some classes of extra-solar planet. 相似文献
6.
To date, no accretion model has succeeded in reproducing all observed constraints in the inner Solar System. These constraints include: (1) the orbits, in particular the small eccentricities, and (2) the masses of the terrestrial planets - Mars’ relatively small mass in particular has not been adequately reproduced in previous simulations; (3) the formation timescales of Earth and Mars, as interpreted from Hf/W isotopes; (4) the bulk structure of the asteroid belt, in particular the lack of an imprint of planetary embryo-sized objects; and (5) Earth’s relatively large water content, assuming that it was delivered in the form of water-rich primitive asteroidal material. Here we present results of 40 high-resolution (N = 1000-2000) dynamical simulations of late-stage planetary accretion with the goal of reproducing these constraints, although neglecting the planet Mercury. We assume that Jupiter and Saturn are fully-formed at the start of each simulation, and test orbital configurations that are both consistent with and contrary to the “Nice model”. We find that a configuration with Jupiter and Saturn on circular orbits forms low-eccentricity terrestrial planets and a water-rich Earth on the correct timescale, but Mars’ mass is too large by a factor of 5-10 and embryos are often stranded in the asteroid belt. A configuration with Jupiter and Saturn in their current locations but with slightly higher initial eccentricities (e = 0.07-0.1) produces a small Mars, an embryo-free asteroid belt, and a reasonable Earth analog but rarely allows water delivery to Earth. None of the configurations we tested reproduced all the observed constraints. Our simulations leave us with a problem: we can reasonably satisfy the observed constraints (except for Earth’s water) with a configuration of Jupiter and Saturn that is at best marginally consistent with models of the outer Solar System, as it does not allow for any outer planet migration after a few Myr. Alternately, giant planet configurations which are consistent with the Nice model fail to reproduce Mars’ small size. 相似文献
7.
We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today’s eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular. 相似文献
8.
We have investigated the final accretion stage of terrestrial planets from Mars-mass protoplanets that formed through oligarchic growth in a disk comparable to the minimum mass solar nebula (MMSN), through N-body simulation including random torques exerted by disk turbulence due to Magneto-Rotational Instability. For the torques, we used the semi-analytical formula developed by Laughlin et al. [Laughlin, G., Steinacker, A., Adams, F.C., 2004. Astrophys. J. 608, 489-496]. The damping of orbital eccentricities (in all runs) and type-I migration (in some runs) due to the tidal interactions with disk gas is also included. Without any effect of disk gas, Earth-mass planets are formed in terrestrial planet regions in a disk comparable to MMSN but with too large orbital eccentricities to be consistent with the present eccentricities of Earth and Venus in our Solar System. With the eccentricity damping caused by the tidal interaction with a remnant gas disk, Earth-mass planets with eccentricities consistent with those of Earth and Venus are formed in a limited range of disk gas surface density (∼10−4 times MMSN). However, in this case, on average, too many (?6) planets remain in terrestrial planet regions, because the damping leads to isolation between the planets. We have carried out a series of N-body simulations including the random torques with different disk surface density and strength of turbulence. We found that the orbital eccentricities pumped up by the turbulent torques and associated random walks in semimajor axes tend to delay isolation of planets, resulting in more coagulation of planets. The eccentricities are still damped after planets become isolated. As a result, the number of final planets decreases with increase in strength of the turbulence, while Earth-mass planets with small eccentricities are still formed. In the case of relatively strong turbulence, the number of final planets are 4-5 at 0.5-2 AU, which is more consistent with Solar System, for relatively wide range of disk gas surface density (∼10−4-10−2 times MMSN). 相似文献
9.
10.
J. Filiberto 《Icarus》2008,197(1):52-59
Element abundance ratios have been used to both distinguish terrestrial and martian basalts and make estimates on the bulk planetary chemistry. However, these estimates are based upon ratios that are assumed to have been unaffected by igneous processes. Since the extent to which this is valid is unknown, comparisons of terrestrial and martian rocks are best conducted on rocks with similar mineralogy and petrology, and therefore a good likelihood of similar crystallization histories. When the geochemistry of terrestrial ferropicrites is compared with the olivine-phyric and basaltic shergottites, previously observed differences in chemistry are no longer definitive (i.e. Mg/Si, Al/Si, Ca/Si, Fe/Si, FeO/MnO, Al/Ti, Na/Ti, Na/Al, K/La, K/Rb, K/Th, K/U, Th/U ratios). Since ferropicrites are geochemical terrestrial analogs for the shergottites, their formation history can provide useful information about the formation of the shergottites. This suggests that both ferropicrites and shergottites formed from a heavily processed mantle source region. 相似文献
11.
Mariner 10 clear filter (490 nm) images of Mercury were recalibrated and photometrically normalized to produce a mosaic of nearly an entire hemisphere of the planet. Albedo contrasts are slightly larger than seen in the lunar highlands (excluding maria). Variegations indicative of compositional differences include diffuse low albedo units often overlain by smooth plains, the high albedo smooth plains of Borealis Planitia, and high-albedo enigmatic crater floor deposits. A higher level of contrast between immature crater ejecta and average mature material on Mercury compared to the Moon is consistent with a more intense space weathering environment on Mercury that results in a more mature regolith. Immature lunar highlands materials are ∼1.5 times higher in reflectance than analogous immature mercurian materials. Immature materials of the same composition would have the same reflectance on both bodies, thus this observation requires that Mercury's crust contains a significant darkening agent, either opaque minerals or ferrous iron bearing silicates, in abundances significantly higher than those of the lunar highlands. If the darkening agent is opaque minerals (e.g. ilmenite or ulvospinel) Mercury's crust may contain significant ferrous iron and yet not exhibit a 1-μm absorption band. 相似文献
12.
We have performed N-body simulations on final accretion stage of terrestrial planets, including the eccentricity and inclination damping effect due to tidal interaction with a gas disk. We investigated the dependence on a depletion time scale of the disk, and the effect of secular perturbations by Jupiter and Saturn. In the final stage, terrestrial planets are formed through coagulation of protoplanets of about the size of Mars. They would collide and grow in a decaying gas disk. Kominami and Ida [Icarus 157 (2002) 43-56] showed that it is plausible that Earth-sized, low-eccentricity planets are formed in a mostly depleted gas disk. In this paper, we investigate the formation of planets in a decaying gas disk with various depletion time scales, assuming disk surface density of gas component decays exponentially with time scale of τgas. Fifteen protoplanets with are initially distributed in the terrestrial planet regions. We found that Earth-sized planets with low eccentricities are formed, independent of initial gas surface density, when the condition (τcross+τgrowth)/2?τgas?τcross is satisfied, where τcross is the time scale for initial protoplanets to start orbit crossing in a gas-free case and τgrowth is the time scale for Earth-sized planets to accrete during the orbit crossing stage. In the cases satisfying the above condition, the final masses and eccentricities of the largest planets are consistent with those of Earth and Venus. However, four or five protoplanets with the initial mass remain. In the final stage of terrestrial planetary formation, it is likely that Jupiter and Saturn have already been formed. When Jupiter and Saturn are included, their secular perturbations pump up eccentricities of protoplanets and tend to reduce the number of final planets in the terrestrial planet regions. However, we found that the reduction is not significant. The perturbations also shorten τcross. If the eccentricities of Jupiter and Saturn are comparable to or larger than present values (∼0.05), τcross become too short to satisfy the above condition. As a result, eccentricities of the planets cannot be damped to the observed value of Earth and Venus. Hence, for the formation of terrestrial planets, it is preferable that the secular perturbations from Jupiter and Saturn do not have significant effect upon the evolution. Such situation may be reproduced by Jupiter and Saturn not being fully grown, or their eccentricities being smaller than the present values during the terrestrial planets' formation. However, in such cases, we need some other mechanism to eliminate the problem that numerous Mars-sized planets remain uncollided. 相似文献
13.
‘Hot jupiters,’ giant planets with orbits very close to their parent stars, are thought to form farther away and migrate inward via interactions with a massive gas disk. If a giant planet forms and migrates quickly, the planetesimal population has time to re-generate in the lifetime of the disk and terrestrial planets may form [P.J. Armitage, A reduced efficiency of terrestrial planet formation following giant planet migration, Astrophys. J. 582 (2003) L47-L50]. We present results of simulations of terrestrial planet formation in the presence of hot/warm jupiters, broadly defined as having orbital radii ?0.5 AU. We show that terrestrial planets similar to those in the Solar System can form around stars with hot/warm jupiters, and can have water contents equal to or higher than the Earth's. For small orbital radii of hot jupiters (e.g., 0.15, 0.25 AU) potentially habitable planets can form, but for semi-major axes of 0.5 AU or greater their formation is suppressed. We show that the presence of an outer giant planet such as Jupiter does not enhance the water content of the terrestrial planets, but rather decreases their formation and water delivery timescales. We speculate that asteroid belts may exist interior to the terrestrial planets in systems with close-in giant planets. 相似文献
14.
J.E. Chambers 《Icarus》2007,189(2):386-400
The stability of an additional planet between the orbit of Mars and the asteroid belt is examined in the context of the Planet V hypothesis. In this model, the Solar System initially contained a fifth terrestrial planet, “Planet V,” which was removed after ∼700 Myr, a possible trigger for the late heavy bombardment on the inner planets. The model is investigated using 96 N-body integrations of the 8 major planets with an additional body between Mars and the asteroid belt. In more than 1/4 of simulations, Planet V survives for 1000 Myr. In most other cases, Planet V collides with the Sun or hits another planet after several hundred Myr, leaving 4 surviving terrestrial planets. In 24/96 simulations, Planet V is lost by ejection or collision with the Sun while the other four terrestrial planets survive without undergoing a collision. In 18 cases, Planet V is removed at least 200 Myr after the beginning of the simulation. The endstate depends sensitively on the mass of Planet V. Collision with the Sun is likely when Planet V's mass is 0.25 Mars masses or less. When Planet V is more massive than this, collisions involving it and/or other terrestrial planets become commonplace. In unstable systems, the times of first encounter and first collision/ejection depend on the initial aphelion distance of Mars. Reducing Mars's aphelion distance increases these times and also increases the fraction of systems surviving for 1000 Myr. When Mars's current orbit is used, the stability of Planet V increases when these two planets are widely separated initially. Planet V's aphelion distance Q typically begins to cross the asteroid belt within a few tens to a few hundred Myr, and its orbit last leaves the belt several hundred Myr later in most cases. The total time spent with Q>2.1 AU is typically less than 200 Myr. 相似文献
15.
16.
Takayuki Tanigawa 《Planetary and Space Science》2008,56(13):1758-1763
I review the role of planetary migration on the formation process of terrestrial planets. I first show a simple estimation for growth timescale of solid proto-planets and review a linear theory of disk-planet gravitational interaction to estimate the migration rate of proto-planets in a gas disk, and then discuss the difficulty of the formation of terrestrial planets in terms of comparison between migration timescale and growth timescale. Next I show recent studies which suggest possible mechanisms to solve the problem. I briefly discuss the formation process of Mercury in the context of terrestrial-planet formation. 相似文献
17.
Lisa Kaltenegger Malcolm Fridlund Anders Karlsson 《Astrophysics and Space Science》2006,306(3):147-158
The requirements on space missions designed to study Terrestrial exoplanets are discussed. We then investigate whether the
design of such a mission, specifically the Darwin nulling interferometer, can be carried out in a simplified scenario. The
key element here is accepting somewhat higher levels of stellar leakage. We establish detailed requirements resulting from
the scientific rationale for the mission, and calculate detailed parameters for the stellar suppression required to achieve
those requirements. We do this utilizing the Darwin input catalogue. The dominating noise source for most targets in this
sample is essentially constant for all targets, while the leakage diminishes with the square of the distance. This means that
the stellar leakage has an effect on the integration time only for the nearby stars, while for the more distant targets its
influence decreases significantly. We assess the impact of different array configurations and nulling profiles and identify
the stars for which the detection efficiency can be maximized. 相似文献
18.
Marjorie A. Chan Jens Ormö Chris H. Okubo James J. Wray James A. McGovern 《Icarus》2010,205(1):138-519
High Resolution Imaging Science Experiment (HiRISE) imagery and digital elevation models of the Candor Chasma region of Valles Marineris, Mars, reveal prominent and distinctive positive-relief knobs amidst light-toned layers. Three classifications of knobs, Types 1, 2, and 3, are distinguished from a combination of HiRISE and Thermal Emission Imaging System (THEMIS) images based on physical expressions (geometries, spatial relationships), and spectral data from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Type 1 knobs are abundant, concentrated, topographically resistant features with their highest frequency in West Candor, which have consistent stratigraphic correlations of the peak altitude (height). These Type 1 knobs could be erosional remnants of a simple dissected terrain, possibly derived from a more continuous, resistant, capping layer of pre-existing material diagenetically altered through recrystallization or cementation. Types 2 and 3 knobs are not linked to a single stratigraphic layer and are generally solitary to isolated, with variable heights. Type 3 are the largest knobs at nearly an order of magnitude larger than Type 1 knobs. The variable sizes and occasional pits on the tops of Type 2 and 3 knobs suggest a different origin, possibly related to more developed erosion, preferential cementation, or textural differences from sediment/water injection or intrusion, or from a buried impact crater. Enhanced color HiRISE images show a brown coloration of the knob peak crests that is attributable to processing and photometric effects; CRISM data do not show any detectable spectral differences between the knobs and the host rock layers, other than albedo. These intriguing knobs hold important clues to deducing relative rock properties, timing of events, and weathering conditions of Mars history. 相似文献
19.
Shun-ichiro Karato 《Icarus》2011,212(1):14-229
The rheological properties of the mantle of super-Earths have important influences on their orbital and thermal evolution. Mineral physics observations are reviewed to obtain some insights into the rheological properties of deep mantles of these planets where pressure can be as high as ∼1 TPa. It is shown that, in contrast to a conventional view that the viscosity of a solid increases with pressure (at a fixed temperature), viscosity will decrease with pressure (and depth) when pressure exceeds ∼0.1 TPa. The causes for pressure-weakening include: (i) the transition in diffusion mechanisms from vacancy to interstitial mechanism (at ∼0.1 TPa), (ii) the phase transition in MgO from B1 to B2 structure (at ∼0.5 TPa), (iii) the dissociation of MgSiO3 into MgO and SiO2 (at ∼1 TPa), and (iv) the transition to the metallic state (at ∼1 TPa). Some (or all) of them individually or in combination reduce the effective viscosity of constituent materials in the deep interior of super-Earths. Taken together, super-Earths are likely to have low viscosity deep mantle by at least 2-3 orders of magnitude less than the maximum viscosity in the lower mantle of Earth. Because viscosity likely decreases with pressure above ∼0.1 TPa (in addition to higher temperatures for larger planets), deep mantle viscosity of super-Earths will decrease with increasing planetary mass. The inferred low viscosity of the deep mantle results in high tidal dissipation and resultant rapid orbital evolution, and affects thermal history and hence generation of the magnetic field and the style of mantle convection. 相似文献
20.
Anthropic selection of a Solar System with a high Al/Al ratio: Implications and a possible mechanism
Since our technological civilisation depends on our planet's properties, anthropic selection can explain the close match between the high 26Al/27Al ratios in the earliest Solar System solids, which are difficult to produce in models of star-formation, and the limiting value required to cause (the widely observed) thermal processing of planetesimals. We suggest that volatile loss on heating of planetesimals favours future development of technological civilisations in Solar Systems with elevated concentrations of 26Al. 相似文献