首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract– The successful return of the Stardust spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from comet 81P/Wild 2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two‐step laser mass spectrometry demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N rich. Spectral analysis in combination with instrumental detection sensitivies suggest that N is incorporated predominantly in the form of aromatic nitriles (R–C≡N). While organic species in the Stardust samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N containing species in comets has astrobiological implications as comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars.  相似文献   

2.
Of the currently over 300 identified Jupiter family comets (JFCs), we have estimated nucleus sizes and shapes for fewer than 70 and have detailed nucleus observations arising from spacecraft fly-bys for just 3: 19P/Borrelly (Deep Space 1), 81P/Wild 2 (Stardust), and 9P/Tempel 1 (Deep Impact). These observations reveal similarities but also significant diversity. In this review, we make a critical assessment of our knowledge of JFC nuclei and suggest a priority list for observations of the nucleus of the JFC, 67P/Churyumov-Gerasimenko, the Rosetta target comet.  相似文献   

3.
Abstract— We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large‐scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra‐clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. Many similarities can be found between Antarctic micrometeorites and Wild 2 samples, in terms of chemical, mineralogical, and isotopic compositions, and in the structure and composition of their carbonaceous matter. Cosmic dust in the form of CONCORDIA Antarctic micrometeorites and primitive IDPs are preferred samples to study the asteroid‐comet continuum.  相似文献   

4.
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about 1 μm. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the −2.6 to −3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.  相似文献   

5.
Abstract– Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s?1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al‐free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.  相似文献   

6.
We are entering in a new era of space exploration signed by sample return missions. Since the Apollo and Luna Program, the study of extraterrestrial samples in laboratory is gathering an increased interest of the scientific community so that nowadays exploration program of the Solar System is characterized by swelling sample return missions. Beside lunar samples, the NASA Stardust mission was the first successful space mission that on 15 January 2006 brought to Earth solid extraterrestrial samples collected from comet 81P/Wild 2 coma. Grains were collected during cometary fly-by into aerogel and once on Earth have been extracted for laboratory analyses. In the coming two decades many space missions on going or under study will harvest samples from minor bodies. Measurements required for detailed analysis that cannot be performed from a robotic spacecraft, will be carried out on Earth laboratories with the highest analytical accuracy attainable so far. An intriguing objective for the next sample return missions is to understand the nature of organic compounds. Organic compounds found in Stardust grains even if processed to large extend during aerogel capturing are here reported. Major objectives of Marco Polo mission are reported. Various ground-based observational programs within the framework of general characterizations of families and classes, cometary–asteroid transition objects and NEOs with cometary albedo are discussed and linked to sample return mission.  相似文献   

7.
NASA’s Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10−15 to ∼10−4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca–Al inclusions in primitive meteorites. Minor mineral phases, including Cu–Fe-sulfide, Fe–Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 μm). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant depletion from the CI values and the moderately volatile elements Cu, Zn, Ga are enriched relative to CI. This elemental abundance pattern is similar to that in anhydrous, porous interplanetary dust particles (IDPs), suggesting that, if Wild 2 dust preserves the original composition of the Solar Nebula, the anhydrous, porous IDPs, not the CI meteorites, may best reflect the Solar Nebula abundances. This might be tested by elemental composition measurements on cometary meteors.  相似文献   

8.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

9.
Aluminum foils from the Stardust cometary dust collector contain impact craters formed during the spacecraft's encounter with comet 81P/Wild 2 and retain residues that are among the few unambiguously cometary samples available for laboratory study. Our study investigates four micron‐scale (1.8–5.2 μm) and six submicron (220–380 nm) diameter craters to better characterize the fine (<1 μm) component of comet Wild 2. We perform initial crater identification with scanning electron microscopy, prepare the samples for further analysis with a focused ion beam, and analyze the cross sections of the impact craters with transmission electron microscopy (TEM). All of the craters are dominated by combinations of silicate and iron sulfide residues. Two micron‐scale craters had subregions that are consistent with spinel and taenite impactors, indicating that the micron‐scale craters have a refractory component. Four submicron craters contained amorphous residue layers composed of silicate and sulfide impactors. The lack of refractory materials in the submicron craters suggests that refractory material abundances may differentiate Wild 2 dust on the scale of several hundred nanometers from larger particles on the scale of a micron. The submicron craters are enriched in moderately volatile elements (S, Zn) when normalized to Si and CI chondrite abundances, suggesting that, if these craters are representative of the Wild 2 fine component, the Wild 2 fines were not formed by high‐temperature condensation. This distinguishes the comet's fine component from the large terminal particles in Stardust aerogel tracks which mostly formed in high‐temperature events.  相似文献   

10.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   

11.
Abstract– The solid 2–10 μm samples of comet Wild 2 provide a limited but direct view of the solar nebula solids that accreted to form Jupiter family comets. The samples collected by the Stardust mission are dominated by high‐temperature materials that are closely analogous to meteoritic components. These materials include chondrule and CAI‐like fragments. Five presolar grains have been discovered, but it is clear that isotopically anomalous presolar grains are only a minor fraction of the comet. Although uncertain, the presolar grain content is perhaps higher than found in chondrites and most interplanetary dust particles. It appears that the majority of the analyzed Wild 2 solids were produced in high‐temperature “rock forming” environments, and they were then transported past the orbit of Neptune, where they accreted along with ice and organic components to form comet Wild 2. We hypothesize that Wild 2 rocky components are a sample of a ubiquitously distributed flow of nebular solids that was accreted by all bodies including planets and meteorite parent bodies. A primary difference between asteroids and the rocky content of comets is that comets are dominated by this widely distributed component. Asteroids contain this component, but are dominated by locally made materials that give chondrite groups their distinctive properties. Because of the large radial mixing in this scenario, it seems likely that most comets contain a similar mix of rocky materials. If this hypothesis is correct, then properties such as oxygen isotopes and minor element abundances in olivine, should have a wider dispersion than in any chondrite group, and this may be a characteristic property of primitive outer solar system bodies made from widely transported components.  相似文献   

12.
Abstract– Low‐iron, manganese‐enriched (LIME) olivine grains are found in cometary samples returned by the Stardust mission from comet 81P/Wild 2. Similar grains are found in primitive meteoritic clasts and unequilibrated meteorite matrix. LIME olivine is thermodynamically stable in a vapor of solar composition at high temperature at total pressures of a millibar to a microbar, but enrichment of solar composition vapor in a dust of chondritic composition causes the FeO/MnO ratio of olivine to increase. The compositions of LIME olivines in primitive materials indicate oxygen fugacities close to those of a very reducing vapor of solar composition. The compositional zoning of LIME olivines in amoeboid olivine aggregates is consistent with equilibration with nebular vapor in the stability field of olivine, without re‐equilibration at lower temperatures. A similar history is likely for LIME olivines found in comet samples and in interplanetary dust particles. LIME olivine is not likely to persist in nebular conditions in which silicate liquids are stable.  相似文献   

13.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   

14.
Assuming that similar organic components as in comet 81P/Wild 2 are present in incoming meteoroids, we try to anticipate the observable signatures they would produce for meteor detection techniques. In this analysis we consider the elemental and organic components in cometary aggregate interplanetary dust particles and laboratory analyses of inter- and circumstellar carbon dust analogues. On the basis of our analysis we submit that (semi) quantitative measurements of H, N and C produced during meteor ablation will open an entire new aspect to using meteoroids as tracers of these volatile element abundances in active comets and their contributions to the mesospheric metal layers.  相似文献   

15.
《Icarus》1987,69(1):33-50
Spectrophotometric data on groups of asteroids in different types of orbits reveal different distributions of spectral properties, depending on whether the orbits are cometary or noncometary. In a list of 10 asteroids frequently suggested on purely dynamical grounds to be extinct or dormant comets, all have properties suggestive of spectral classes D, P, or C. Preliminary IRAS albedo results support this. Objects in these classes are very dark, reddish-black to neutral-black, and prevalent among the Trojans and outer belt. Two comets observed at low activity (visible nuclei) also have properties more consistent with D asteroids than any other class (very low reported geometric albedos of 0.02 and red colors). Consistent with these results are very low albedos reported for materials in more than a dozen comets; they average 0.05. Also, sampled cometary dust particles appear to consist of dark carbonaceous materials. Dramatically different are a control group of 13 Aten/Apollo/Amor objects selected from noncometary orbits. Most are in moderate-albedo classes: 8 or 9 appear to be of class S, and only 1 is in a low-albedo class (C). These are probably mostly objects perturbed out of the inner asteroid belt. The preponderence of S's in the noncometary group, together with the preponderence of ordinary chondrites among meteorites, may be evidence that such meteorites came from S asteroids. The data indicate that extinct, dormant, inactive, and minimally active comet nuclei have low albedos (pv=a few percent) and very red to moderately red colors. As a group, their spectra are more similar to those of outer Solar System asteroids of classes D, P, and C, than to those of inner belt classes, though the observations are frequently not yet complete enough to assign definitively a spectral class. The results, taken together, support the view that dynamically identified “extinct comet candidates” are indeed outer Solar System objects probably of cometary origin. The results also support a scenario of Solar System formation in which dark carbonaceous dust dominated the spectrophotometric properties of planetesimals formed from about 2.7 AU out to at least the Trojan region at 5.2 AU. From 2.7 to at least 5.2 AU, and from class C to class D, the color of this dust reddens, apparently due to increasing amounts of red organic condensates. Comets are probably also colored to different degrees, by dust of this type, and may in some cases be even redder than D asteroids.  相似文献   

16.
Abstract– Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si‐CH3 groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.  相似文献   

17.
Abstract– Impacts of small particles of soda‐lime glass and glycine onto low density aerogel are reported. The aerogel had a quality similar to the flight aerogels carried by the NASA Stardust mission that collected cometary dust during a flyby of comet 81P/Wild 2 in 2004. The types of track formed in the aerogel by the impacts of the soda‐lime glass and glycine are shown to be different, both qualitatively and quantitatively. For example, the soda‐lime glass tracks have a carrot‐like appearance and are relatively long and slender (width to length ratio <0.11), whereas the glycine tracks consist of bulbous cavities (width to length ratio >0.26). In consequence, the glycine particles would be underestimated in diameter by a factor of 1.7–3.2, if the glycine tracks were analyzed using the soda‐lime glass calibration and density. This implies that a single calibration for impacting particle size based on track properties, as previously used by Stardust to obtain cometary dust particle size, is inappropriate.  相似文献   

18.
Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s?1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. We simulated Stardust Al foil capture conditions using a two‐stage light‐gas gun, and directly compared transmission electron microscope analyses of pre‐ and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact‐induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe‐ and Fe‐Si‐rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al‐bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state‐of‐the‐art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues.  相似文献   

19.
We compute masses and densities for 10 periodic comets with known sizes: 1P/Halley, 2P/Encke, 6P/d'Arrest, 9P/Tempel 1, 10P/Tempel 2, 19P/Borrelly, 22P/Kopff, 46P/Wirtanen, 67P/Churyumov–Gerasimenko and 81P/Wild 2. The method follows the one developed by Rickman and colleagues, which is based on the gas production curve and on the change in the orbital period due to the non-gravitational force. The gas production curve is inferred from the visual light curve. We found that the computed masses cover more than three orders of magnitude:  ≃(0.3–400) × 1012  kg. The computed densities are in all cases very low (≲0.8 g cm−3), with an average value of 0.4 g cm−3, in agreement with previous results and models of the cometary nucleus depicting it as a very porous object. The computed comet densities turn out to be the lowest among the different populations of Solar system minor bodies, in particular as compared to those of near-Earth asteroids (NEAs). We conclude that the model applied in this paper, in spite of its simplicity (as compared to more sophisticated thermophysical models applied to very few comets), is useful for a statistical approach to the mean density of the cometary nuclei. However, we cannot assess from this simple model if there is a real dispersion among the bulk densities of comets that could tell us about differences in physical structure (porosity) and/or chemical composition.  相似文献   

20.
So far there is no conclusive evidence for water in the nucleus of 81P/comet Wild 2. Recently magnetite in collected Wild 2 samples was cited as proxy evidence for parent body aqueous alteration in this comet (Hicks et al. 2017 ). A potentional source for water of hydration would be layer silicates but unfortunately there is no record, neither texturally nor chemically, for hydrated layer silicates that survived hypervelocity impact in the Wild 2 samples. This paper reports large vesicles in the matrix of allocation C2044,2,41,2,5 from a volatile‐rich type B/C Stardust track. These vesicles were probably caused by boiling water that were generated when hydrated Wild 2 silicates impacted the near‐surface silica aerogel layer. Potential water sources were partially and fully hydrated GEMS (glass with embedded metal and sulfides) and CI carbonaceous chondrite materials among the earliest dusts that experienced hydration and icy‐body formation and long‐range transport and mixing with materials from across the solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号