首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new non-singular analytical theory for the contraction of near-Earth satellite orbits under the influence of air drag is developed in terms of uniformly regular Kustaanheimo and Stiefel (KS) canonical elements using an oblate atmosphere with variation of density scale height with altitude. The series expansions include up to fourth power in terms of eccentricity and c (a small parameter dependent on the flattening of the atmosphere). Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. It is observed that the analytically computed values of the semi-major axis and eccentricity are consistent with the numerically integrated values up to 500 revolutions over a wide range of the drag-perturbed orbital parameters. The theory can be effectively used for re-entry of near-Earth objects.  相似文献   

2.
《Planetary and Space Science》2007,55(10):1388-1397
A new non-singular analytical theory for the motion of near Earth satellite orbits with the air drag effect is developed in terms of the Kustaanheimo and Stiefel (KS) uniformly regular canonical elements, by assuming the atmosphere to be oblate diurnally varying with constant density scale height. The series expansions include up to third-order terms in eccentricity and c (a small parameter dependent on the flattening of the atmosphere). Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. Numerical comparisons of the important orbital parameters semimajor axis and eccentricity up to 1000 revolutions, obtained with the present solution, with the third-order analytical theories of Swinerd and Boulton and in terms of the KS elements, with respect to the numerically integrated values, show the superiority of the present solution over the other two theories over a wide range of eccentricity, perigee height and inclination.  相似文献   

3.
A new nonsingular analytical theory for the motion of near Earth satellite orbits with the air drag effect is developed for long term motion in terms of the KS uniformly regular canonical elements by a series expansion method, by assuming the atmosphere to be symmetrically spherical with constant density scale height. The series expansions include up to third order terms in eccentricity. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. Numerical comparisons of the important orbital parameters semi major axis and eccentricity up to 1000 revolutions, obtained with the present solution, with KS elements analytical solution and Cook, King-Hele and Walker's theory with respect to the numerically integrated values, show the superiority of the present solution over the other two theories over a wide range of eccentricity, perigee height and inclination.  相似文献   

4.
The orbit-averaged differential equations of motion of dust particles under gravity, radiation pressure and Poynting-Robertson drag were given by Wyatt and Whipple (1950). An integral of motion enables the system of two equations in semi-major axis a and eccentricity e to be reduced to one equation, the solution of which is presented here in terms of analytical formulae. An efficient numerical algorithm to compute the solution is given. Listings of two FORTRAN routines are included.  相似文献   

5.
The equations characterizing the motion of an artificial satellite in a non-rotating spherically symmetrical atmosphere are integrated in the assumption of a linear variation of the density scale height with height, and using a new variable instead of the true anomaly. The secular perturbations in the semi-major axis and eccentricity are deduced.  相似文献   

6.
Tidal interactions between Planet and its satellites are known to be the main phenomena, which are determining the orbital evolution of the satellites. The modern ansatz in the theory of tidal dissipation in Saturn was developed previously by the international team of scientists from various countries in the field of celestial mechanics. Our applying to the theory of tidal dissipation concerns the investigating of the system of ODE-equations (ordinary differential equations) that govern the orbital evolution of the satellites; such an extremely non-linear system of 2 ordinary differential equations describes the mutual internal dynamics for the eccentricity of the orbit along with involving the semi-major axis of the proper satellite into such a monstrous equations. In our derivation, we have presented the elegant analytical solutions to the system above; so, the motivation of our ansatz is to transform the previously presented system of equations to the convenient form, in which the minimum of numerical calculations are required to obtain the final solutions. Preferably, it should be the analytical solutions; we have presented the solution as a set of quasi-periodic cycles via re-inversing of the proper ultra-elliptical integral. It means a quasi-periodic character of the evolution of the eccentricity, of the semi-major axis for the satellite orbit as well as of the quasi-periodic character of the tidal dissipation in the Planet.  相似文献   

7.
研究了在高空电离层中运动的带电荷的卫星受电感应阻力后对轨道根数产生的摄动影响。研究结果表明 ,电感应阻力对带电卫星的轨道半长轴、轨道偏心率、近地点赤经、历元平赤经均有周期摄动影响 ,但除对半长轴有长期摄动效应外对其它轨道根数均无长期摄动。轨道倾角和升交点赤经不受摄动影响。文中以飞行在高度 1 50 0km的电离层中的导体卫星作为算例。计算结果显示 :带电导体卫星在高空电离层中带有一定电量时电感应阻力对轨道半长轴的缩短产生显著效应  相似文献   

8.
In this paper we present an analytical theory with numerical simulations to study the orbital motion of lunar artificial satellites. We consider the problem of an artificial satellite perturbed by the non-uniform distribution of mass of the Moon and by a third-body in elliptical orbit (Earth is considered). Legendre polynomials are expanded in powers of the eccentricity up to the degree four and are used for the disturbing potential due to the third-body. We show a new approximated equation to compute the critical semi-major axis for the orbit of the satellite. Lie-Hori perturbation method up to the second-order is applied to eliminate the terms of short-period of the disturbing potential. Coupling terms are analyzed. Emphasis is given to the case of frozen orbits and critical inclination. Numerical simulations for hypothetical lunar artificial satellites are performed, considering that the perturbations are acting together or one at a time.  相似文献   

9.
10.
A second order atmospheric drag theory based on the usage of TD88 model is constructed. It is developed to the second order in terms of TD88 small parameters K n,j . The short periodic perturbations, of all orbital elements, are evaluated. The secular perturbations of the semi-major axis and of the eccentricity are obtained. The theory is applied to determine the lifetime of the satellites ROHINI (1980 62A), and to predict the lifetime of the microsatellite MIMOSA. The secular perturbations of the nodal longitude and of the argument of perigee due to the Earth’s gravity are taken into account up to the second order in Earth’s oblateness.  相似文献   

11.
Analytical theory for short-term orbit motion of satellite orbits with Earth's zonal harmonicsJ 3 andJ 4 is developed in terms of KS elements. Due to symmetry in KS element equations, only two of the nine equations are integrated analytically. The series expansions include terms of third power in the eccentricity. Numerical studies with two test cases reveal that orbital elements obtained from the analytical expressions match quite well with numerically integrated values during a revolution. Typically for an orbit with perigee height, eccentricity and inclination of 421.9 km, 0.17524 and 30 degrees, respectively, maximum differences of 27 and 25 cm in semimajor axis computation are noted withJ 3 andJ 4 term during a revolution. For application purposes, the analytical solutions can be used for accurate onboard computation of state vector in navigation and guidance packages.  相似文献   

12.
Perturbative post-Newtonian variations of the standard osculating orbital elements are obtained by using the two-body equations of motion in the parameterized post-Newtonian theoretical framework. The results obtained are applied to the Einstein and Brans–Dicke theories. As a results, the semi-major axis and eccentricity exhibit periodic variation, but no secular changes. The longitude of periastron and mean longitude at epoch experience both secular and periodic shifts. The post-Newtonian effects are calculated and discussed for six extrasolar planets.  相似文献   

13.
We investigated the motion of the Earth's artificial satellite Interball‐1 by using a method suitable for the computation of large eccentricity orbits. Though the measured and the computed orbital elements differ from each other within the measured error bound, we found a slight tendency for secular decreasing in the semi‐major axis, caused probably by electromagnetic drag. We analysed the dominant role of the Moon in the variations of the orbital eccentricity, leading to zero perigee height and the end of the lifetime of the satellite. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
An analytical interpretation of the satellite orbital element perturbations under influence of a drag has been developed. Some useful formulae for the perturbations of the semi-major axis are given. The agreement with observed values is very good.  相似文献   

15.
Taking the re-entry object CZ-3B R/B (COSPAR identifier 2012-018D, NORAD catalog number 38253) as an example, retrieval of atmospheric mass densities in lower thermosphere below 200 km from its rebuilt precise orbit is studied in this paper. Two methodologies, i.e. analytical and numerical methods, are adopted in the retrieval. Basic principles of these two methodologies are briefly introduced. Based on the short-arc sparse observational data accumulated in the high accuracy re-entry prediction, orbit determinations of re-entry object CZ-3B R/B are performed sectionally, and then its precise orbit is rebuilt. According to the orbit theory, the variation of orbital semi-major axis of re-entry object CZ-3B R/B induced by atmospheric drag perturbation only is derived from the rebuilt precise orbit. In the derivation of secular change of the orbital semi-major axis of re-entry object CZ-3B R/B induced by atmospheric drag perturbation only, the time-span is set as one minute tentatively. And then retrieval results of atmospheric mass densities in lower thermosphere below 200 km by analytical and numerical methods are presented, as well as their bias deviations from the calculated results of the NRLMSISE-00 empirical model of the atmosphere. Setting bias deviation bands, the corresponding ‘confidence coefficients’ of the retrieved atmospheric mass densities with respect to the model values are given. Average bias deviations of the retrieved atmospheric mass densities by analytical and numerical methods from the model values are also calculated respectively. On the whole, the retrieved atmospheric mass densities by numerical method approach to the model values more closely; the differences between the retrieved results and the model values are relatively smaller at the peaks of atmospheric mass densities than the other places.  相似文献   

16.
The planets with a radius < 4 R observed by the Kepler mission exhibit a unique feature, and propose a challenge for current planetary formation models. The tidal effect between a planet and its host star plays an essential role in reconfiguring the final orbits of the short-period planets. In this work, based on various initial Rayleigh distributions of the orbital elements, the final semi-major axis distributions of the planets with a radius < 4 R after suffering tidal evolutions are investigated. Our simulations have qualitatively revealed some statistical properties: the semi-major axis and its peak value all increase with the increase of the initial semi-major axis and eccentricity. For the case that the initial mean semi-major axis is less than 0.1 au and the mean eccentricity is larger than 0.25, the results of numerical simulation are approximately consistent with the observation. In addition, the effects of other parameters, such as the tidal dissipation coefficient, stellar mass and planetary mass, etc., on the final semi-major axis distribution after tidal evolution are all relatively small. Based on the simulation results, we have tried to find some clues for the formation mechanism of low-mass planets. We speculate that these low-mass planets probably form in the far place of protoplanetary disk with a moderate eccentricity via the type I migration, and it is also possible to form in situ.  相似文献   

17.
Anonlinear analytical theory of secular perturbations in the problem of the motion of a systemof small bodies around a major attractive center has been developed. Themutual perturbations of the satellites and the influence of the oblateness of the central body are taken into account in the model. In contrast to the classical Laplace-Lagrange theory based on linear equations for Lagrange elements, the third-degree terms in orbital eccentricities and inclinations are taken into account in the equations. The corresponding improvement of the solution turns out to be essential in studying the evolution of orbits over long time intervals. A program inC has been written to calculate the corrections to the fundamental frequencies of the solution and the third-degree secular perturbations in orbital eccentricities and inclinations. The proposed method has been applied to investigate the motion of the major Uranian satellites. Over time intervals longer than 100 years, allowance for the nonlinear terms in the equations is shown to give corrections to the coordinates of Miranda on the order of the orbital eccentricity, which is several thousand kilometers in linear measure. For other satellites, the effect of allowance for the nonlinear terms turns out to be smaller. Obviously, when a general analytical theory of motion for the major Uranian satellites is constructed, the nonlinear terms in the equations for the secular perturbations should be taken into account.  相似文献   

18.
We derive the exact equations of motion for the circular restricted three-body problem in cylindrical curvilinear coordinates together with a number of useful analytical relations linking curvilinear coordinates and classical orbital elements. The equations of motion can be seen as a generalization of Hill’s problem after including all neglected nonlinear terms. As an application of the method, we obtain a new expression for the averaged third-body disturbing function including eccentricity and inclination terms. We employ the latter to study the dynamics of the guiding center for the problem of circular coorbital motion providing an extension of some results in the literature.  相似文献   

19.
The theory of velocity dependent inertial induction, based upon extended Mach’s principle, has been able to generate many interesting results related to celestial mechanics and cosmological problems. Because of the extremely minute magnitude of the effect its presence can be detected through the motion of accurately observed bodies like Earth satellites. LAGEOS I and II are medium altitude satellites with nearly circular orbits. The motions of these satellites are accurately recorded and the past data of a few decades help to test many theories including the general theory of relativity. Therefore, it is hoped that the effect of the Earth’s inertial induction can have any detectable effect on the motion of these satellites. It is established that the semi-major axis of LAGEOS I is decreasing at the rate of 1.3 mm/d. As the atmospheric drag is negligible at that altitude, a proper explanation of the secular change has been wanting, and, therefore, this paper examines the effect of the Earth’s inertial induction effect on LAGEOS I. Past researches have established that Yarkovsky thermal drag, charged and neutral particle drag might be the possible mechanisms for this orbital decay. Inertial induction is found to generate a perturbing force that results in 0.33 mm/d decay of the semi major axis. Some other changes are also predicted and the phenomenon also helps to explain the observed changes in the orbits of a few other satellites. The results indicate the feasibility of the theory of inertial induction i.e. the dynamic gravitation phenomenon of the Earth on its satellites as a possible partial cause for orbital decay.  相似文献   

20.
Satellites in almost circular paths experience appreciable drag throughout the entire orbit; the localised effect being intrinsically related to the global distribution of exospheric temperature. To normalise the density values derived from such orbits to a fixed temperature, an effective exospheric temperature is required. In this paper a “pseudo” exospheric temperature is determined analytically such that, by assuming the atmosphere is held constant at this temperature, the same perturbation in the semi-major axis is achieved as that by a satellite moving in an atmosphere exhibiting a realistic approximant to the measured diurnal variation in temperature. The theory is applied to data and densities derived from orbital analysis of Skylab 1 and the course of the semi-annual variation is retraced for 1974–1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号