首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Kimura  H.  Mann  I.  Wehry  A. 《Astrophysics and Space Science》1998,264(1-4):213-218
We deduce the mass distribution and total mass density of interstellar dust streaming into the solar system and compare the results to the conditions of the very local interstellar medium (VLISM). The mass distribution derived from in situ measurements shows a gentler slope and includes larger grains, compared to a model distribution proposed for the wavelength dependence of the interstellar extinction. The mass density of grains in the solar system is consistent with that expected from measurements of the visible interstellar extinction and the abundance constraints of elements in the diffuse interstellar medium (ISM), instead of those in the VLISM. This may imply that interstellar dust grains are not associated with the VLISM and that the conditions of the grains are better represented by the ones expected in the diffuse ISM. If this is the case, then the flatter slope in the mass distribution and the detection of larger interstellar grains in the solar system may even indicate that coagulation growth of dust in the diffuse ISM is more effective than previously inferred. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Interstellar extinction curves obtained from the ‘extinction without standard’ method were used to constrain the dust characteristics in the mean ISM (R V = 3.1), along the lines of sight through a high latitude diffuse molecular cloud towards HD 210121 (R V = 2.1) and in a dense interstellar environment towards the cluster NGC 1977 (R V = 6.42). We have used three-component dust models comprising silicate, graphite and very small carbonaceous grains (polycyclic aromatic hydrocarbons) following the grain size distributions introduced by Li & Draine in 2001. It is shown that oxygen, carbon and silicon abundances derived from our models are closer with the available elemental abundances for the dust grains in the ISM if F & G type stars atmospheric abundances are taken for the ISM than the solar. The importance of very small grains in modelling the variation of interstellar extinction curves has been investigated. Grain size distributions and elemental abundances locked up in dust are studied and compared at different interstellar environments using these three extinction curves. We present the albedo and the scattering asymmetry parameter evaluated from optical to extreme-UV wavelengths for the proposed dust models.  相似文献   

3.
The ?2200 Å interstellar absorption band, generally attributed to graphite grains, could equally well arise from π→π* electronic transitions in conjugated double bonds of organic molecules. These molecules, which should comprise ~10% of the total interstellar dust mass, may be lodged within clumps of 100 Å-sized refractory grains.  相似文献   

4.
Nucleation is a non-equilibrium process: the products of this process are seldom the most thermodynamically stable condensates but are instead those which form fastest. It should therefore not be surprising that grains formed in a circumstellar outflow will undergo some degree of metamorphism if they are annealed or are exposed to a chemically active reagent. Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Various workers have shown that refractory mantles could form on refractory cores by radiation processing of organic ices. A similar process may operate to produce refractory inorganic mantles on grain cores which survived the supernova shocks. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which we hope to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. Some discussion of the physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be attempted based on the limited laboratory data available to date. Suggestions will be made concerning types of experimental data which are needed in order to better understand the processing history of cosmic dust.  相似文献   

5.
The λ2200 Å interstellar absorption band, generally attributed to graphite grains, could equally well arise from π → π*electronic transitions in conjugated double bonds of organic molecules. These molecules, which should comprise ~ 10% of the total interstellar dust mass, may be lodged within clumps of100 Å-sized refractory grains.  相似文献   

6.
We present isophot spectrophotometry of three positions within the isolated high-latitude cirrus cloud G 300.2−16.8, spanning from the near- to far-infrared (NIR to FIR). The positions exhibit contrasting emission spectrum contributions from the unidentified infrared bands (UIBs), very small grains (VSGs) and large classical grains, and both semi-empirical and numerical models are presented. At all three positions, the UIB spectrum shapes are found to be similar and the large grain emission may be fitted by an equilibrium temperature of  ∼17.5 K  . The energy requirements of both the observed emission spectrum and optical scattered light are shown to be satisfied by the incident local interstellar radiation field (ISRF). The FIR emissivity of dust in G 300.2−16.8 is found to be lower than in globules or dense clouds and is even lower than model predictions for dust in the diffuse interstellar medium (ISM). The results suggest physical differences in the ISM mixtures between positions within the cloud, possibly arising from grain coagulation processes.  相似文献   

7.
Recent claims of small icy comets disintegrating in the high atmosphere point to a component of comets in the form of loose aggregates of dust. This could be understood in terms of Lyttleton;'s theory of comet formation by accretion of interstellar grains. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Tremendous progress has been made in the field of interstellar dust in recent years through the use of telescopic observations, theoretical studies, laboratory studies of analogs, and the study of actual interstellar samples found in meteorites. It is increasingly clear that the interstellar medium (ISM) contains an enormous diversity of materials created by a wide range of chemical and physical processes. This understanding is a far cry from the picture of interstellar materials held as recently as two decades ago, a picture which incorporated only a few generic types of grains and few molecules. In this paper, I attempt to review some of our current knowledge of the more abundant materials thought to exist in the ISM. The review concentrates on matter in interstellar dense molecular clouds since it is the materials in these environments from which new stars and planetary systems are formed. However, some discussion is reserved for materials in circumstellar environments and in the diffuse ISM. The paper also focuses largely on solid materials as opposed to gases since solids contain a major fraction of the heavier elements in clouds and because solids are most likely to survive incorporation into new planetary systems in identifiable form. The paper concludes with a discussion of some of the implications resulting from the recent growth of our knowledge about interstellar materials and also considers a number of areas in which future work might be expected to yield important results.  相似文献   

9.
We present ISOPHOT observations of eight interstellar regions in the 60–200 μm wavelength range. The regions belong to mostly quiescent high-latitude clouds and have optical extinction peaks from   AV ∼1–6 mag  . From the 150- and 200-μm emission, we derived colour temperatures for the classical big grain component which show a clear trend of decreasing temperature with increasing 200-μm emission. The 200-μm emission per unit   AV   , however, does not drop at lower temperatures. This fact can be interpreted in terms of an increased far-infrared (FIR) emissivity of the big grains. We developed a two-component model including warm dust with the temperature of the diffuse interstellar medium (ISM) of   T = 17.5 K  , and cold dust with   T = 13.5 K  and FIR emissivity increased by a factor of >4. A mixture of the two components can reproduce the observed colour variations and the ratios   I 200/ AV   and  τ200/ AV   . The relative abundance of small grains with respect to the big grains shows significant variations from region to region at low column densities. However, in lines of sight of higher column density, our data indicate the disappearance of small grains, perhaps a signature of adsorption/coagulation of dust. The larger size and porous structure could also explain the increased FIR emissivity. Our results from eight independent regions suggest that these grains might be ubiquitous in the galactic ISM.  相似文献   

10.
Some two decades ago, Hoyle and Wickramasinghe (1976) proposed that the physical conditions inside dense molecular clouds favour the formation of amino acids and complex organic polymers. There now exists both astronomical and laboratory evidence supporting this idea. Recent millimeter array observations have discovered the amino acid glycine (NH2CH2COOH) in the gas phase of the dense star-forming cloud Sagittarius B2. These observations would pose serious problems for present-day theories of molecule formation in space because it is unlikely that glycline can form by the gas-phase reaction schemes normally considered for dense cloud chemistry. Several laboratory experiments suggest a new paradigm in which amino acids and other large organic molecules are chemically manufactured inside the bulk interior of icy grain mantles photoprocessed by direct and scattered ultraviolet starlight. Frequent chemical explosions of the processed mantles would eject large fragments of organic dust into the ambient cloud. Large dust fragments break up into smaller ones by sputtering and ultimately by photodissociation of individual molecules. Hence, a sizeable column density (N≈ 1010−1015 cm-2) of amino acids would be present in the gaseous medium as a consequence of balancing the rate of supply from exploding mantles with the rate of molecule destruction. Exploding mantles can therefore solve the longstanding molecule desorption problem for interstellar dense cloud chemistry. A sizeable fraction of the organic dust population can survive destruction and seed primitive planetary systems throughout our galaxy with prebiological organic molecules needed for proteins and nucleic acids in living organisms. This possibility provides fresh grounds for a new version of the old panspermia hypothesis first introduced by Anaxagoras. It is shown that panspermia is more important than asteroid and cometary organic depositions onto primitive Earth. Furthermore, no appeal to Miller-Urey synthesis in a nonoxidizing atmosphere of primitive Earth is then needed to seed terrestrial life. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Comets and the chondritic porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3–40 μm) reveal the presence of a warm (near-IR) featureless emission modeled by amorphous carbon grains. Broad andnarrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Feand 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IRspectra of CP IDPs dominated by GEMS (0.1 μm silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He+ ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (<5%), however, to account for the deduced abundance of crystalline silicates in comet dust. An insufficient source of ISMMg-rich crystals leads to the inference that most Mg-rich crystals in comets are primitive grains processed in the early solar nebula prior to their incorporation into comets. Mg-rich crystals may condense in the hot (~1450 K), inner zones of the early solar nebula and then travel large radial distances out to the comet-forming zone. On the other hand, Mg-rich silicate crystals may be ISM amorphous silicates annealed at ~1000 K and radially distributed out to the comet-forming zone or annealed in nebular shocks at ~5-10 AU. Determining the relative abundance of amorphous and crystalline silicatesin comets probes the relative contributions of ISM grains and primitive grains to small, icy bodies in the solar system. The life cycle of dust from its stardust origins through the ISM to its incorporation into comets is discussed.  相似文献   

12.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   

13.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compressible magnetohydrodynamic turbulence. In this paper, we develop a scheme of grain shattering and coagulation and apply it to turbulent ISM by using the grain velocities predicted by the above turbulence theory. Since large grains tend to acquire large velocity dispersions as shown by earlier studies, large grains tend to be shattered. Large shattering effects are indeed seen in warm ionized medium within a few Myr for grains with radius   a ≳ 10−6  cm. We also show that shattering in warm neutral medium can limit the largest grain size in ISM  ( a ∼ 2 × 10−5 cm)  . On the other hand, coagulation tends to modify small grains since it only occurs when the grain velocity is small enough. Coagulation significantly modifies the grain size distribution in dense clouds (DC), where a large fraction of the grains with   a < 10−6 cm  coagulate in 10 Myr. In fact, the correlation among   RV   , the carbon bump strength and the ultraviolet slope in the observed Milky Way extinction curves can be explained by the coagulation in DC. It is possible that the grain size distribution in the Milky Way is determined by a combination of all the above effects of shattering and coagulation. Considering that shattering and coagulation in turbulence are effective if dust-to-gas ratio is typically more than ∼1/10 of the Galactic value, the regulation mechanism of grain size distribution should be different between metal-poor and metal-rich environments.  相似文献   

14.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

15.
Recently a new molecule, cyanomethamine, has been detected towards Sagittarius B2(N)(Sgr B2(N)). Studying the formation mechanisms of complex interstellar molecules is difficult. Hence,a theoretical quantum chemical approach for analyzing the reaction mechanism describing the formation of interstellar cyanomethamine through detected interstellar molecules and radicals(NCCN+H) is discussed in the present work. Calculations are performed by using quantum chemical techniques, such as Density Functional Theory(DFT) and M?ller-Plesset perturbation(MP2) theory with a 6-311G(d,p)basis set, both in the gas phase and in icy grains. The proposed reaction path(NCCN+H+H) has exothermicity with no barrier which indicates the possibility of cyanomethamine formation in the interstellar medium.  相似文献   

16.
The formation of molecular hydrogen  (H2)  in the interstellar medium takes place on the surfaces of dust grains. Hydrogen molecules play a role in gas-phase reactions that produce other molecules, some of which serve as coolants during gravitational collapse and star formation. Thus, the evaluation of the production rate of hydrogen molecules and its dependence on the physical conditions in the cloud are of great importance. Interstellar dust grains exhibit a broad size distribution in which the small grains capture most of the surface area. Recent studies have shown that the production efficiency strongly depends on the grain composition and temperature as well as on its size. In this paper, we present a formula that provides the total production rate of  H2  per unit volume in the cloud, taking into account the grain composition and temperature as well as the grain size distribution. The formula agrees very well with the master equation results. It shows that for a physically relevant range of grain temperatures, the production rate of  H2  is significantly enhanced due to their broad size distribution.  相似文献   

17.
This paper reports results from an experiment designed to measure the nascent rovibrational population of H2 molecules that have formed through the heterogeneous recombination of H atoms on the surface of cosmic dust analogues under conditions approaching those of the interstellar medium (ISM). H2 that has formed on a highly oriented pyrolytic graphite (HOPG) surface has been detected, using laser induced resonance-enhanced multi-photon ionization (REMPI), in the v = 1 (J= 0–3) rovibrational states at surface temperatures of 30 K and 50 K. These excited product molecules display rotational temperatures significantly higher than the target surface temperature. These first results suggest that a considerable proportion of the binding energy released on formation of the H2 is deposited in the surface, in addition to internal excitation of the product molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We consider sulphur depletion in dense molecular clouds, and suggest hydrated sulphuric acid, H2SO4 ·  n H2O, as a component of interstellar dust in icy mantles. We discuss the formation of hydrated sulphuric acid in collapsing clouds and its instability in heated regions in terms of the existing hot core models and observations. We also show that some features of the infrared spectrum of hydrated sulphuric acid have correspondence in the observed spectra of young stellar objects.  相似文献   

19.
P.A. Gerakines  M.H. Moore 《Icarus》2004,170(1):202-213
Hydrogen cyanide (HCN) has been identified in the gas phase of the interstellar medium as well as in the comae of several comets. Terrestrially, HCN is a key component in the synthesis of biologically important molecules such as amino acids. In this paper, we report the results of low-temperature (18 K) ice energetic processing experiments involving pure HCN and mixtures of HCN with H2O and NH3. Ice films, 0.1 to several microns in thickness, were exposed to either ultraviolet photons (110-250 nm) or 0.8-MeV protons to simulate the effects of space environments. Observed products include HCNO (isocyanic acid), NH4+ (ammonium ion), CN (cyanide ion), OCN (cyanate ion), HCONH2 (formamide), and species spectrally similar to HCN polymers. Product formation rates and HCN destruction rates were determined where possible. Results are discussed in terms of astrophysical situations in the ISM and the Solar System where HCN would likely play an important role in prebiotic chemistry. These results imply that if HCN is present in icy mixtures representative of the ISM or in comets, it will be quickly converted into other species in energetic environments; pure HCN seems to be polymerized by incident radiation.  相似文献   

20.
《Icarus》1987,69(1):70-82
It is shown that the dense, turbulent, decelerating shells produced by protostellar flows around young stars are a probable site for rapid grain growth by coalescing collisions. The growth of grains occurs in a thin dust layer at the leading edge of the gas shell until a critical grain size on the order of 1−10 μm is reached. Grains larger than this decouple from the turbulence and eventually reach sizes of ≈100 μm. These large grains form a thin dust shell with low-velocity dispersion, in which ultimately local gravitational instability takes place. This causes the accumulation of comet-sized aggregations of dust, assuming that the dust velocity dispersion is on the order of 10−2 m sec−1. It is proposed that the mechanism could lead to a high space density of comets in molecular clouds. The efficient formation of “giant” grains, and even comet nuclei, in the regions around young stars has important implications both for cometary astronomy and for understanding the dynamical and chemical evolution of molecular clouds and the interstellar medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号