首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
于2011年5月~2012年4月对曹妃甸海域的温度、盐度、透明度、溶解氧、化学需氧量、亚硝酸盐、硝酸盐、氨氮、活性磷酸盐、总氮、总磷、叶绿素-a、叶绿素-b、油类等理化因子和营养指标进行调查,根据调查结果进行分析,揭示了该海域理化因子的时空变化规律,对海域的营养状况进行评价,为曹妃甸海域生态系统的研究积累基础资料。结果表明,调查期间该海域溶解氧含量平均值为7.93mg/L,变化范围为3.64~11.08mg/L;化学需氧量含量平均值为1.03mg/L,变化范围为0.25~3.05mg/L;无机氮含量平均值为1.24mg/L,变化范围为0.02~6.05mg/L;活性磷酸盐含量平均值为1.75×10~(-2) mg/L,变化范围为0.10×10~(-2)~5.72×10~(-2) mg/L;叶绿素-a含量的平均值为5.60μg/L,变化范围为0.49~31.17μg/L;叶绿素-b含量的平均值为1.67μg/L,变化范围为0.31~6.81μg/L;油类含量的平均值为0.119mg/L,变化范围为0.000~0.680mg/L。N:P值均大于16,属于磷限制性海域;根据潜在富营养化评价模式,营养状态质量指数法评价模式,为磷限制潜在性富营养(ⅥP)且为富营养化水平;而通过有机污染指数计算结果来看,有机污染为中度污染。  相似文献   

2.
文章依据2018 年8月、10月及2019年4月、6月庙岛群岛海域4个航次的调查资料,分析该海域不同月份DIN、PO4-P、SiO3-Si的平面分布及限制特征。结果表明:庙岛群岛海域DIN浓度范围为0.82~95.14 μmol/L,平均值为5.27 μmol/L,在2018年8月最高;PO4-P浓度范围为未检出至2.12 μmol/L,平均值为0.19 μmol/L,在2018年10月最高;SiO3-Si浓度范围为0.25~48.93 μmol/L,平均值为5.38 μmol/L,在2018年8月最高;总体而言,庙岛群岛海域夏季营养盐浓度较高,春季营养盐相对匮乏。庙岛群岛海域2018年8月、10月和2019年6月为PO4-P限制,2019年4月为SiO3-Si和PO4-P限制;PO4-P限制使海域初级生产力受到一定限制,对海水养殖业造成一定影响;SiO3-Si浓度低不利于硅藻生长,从而间接助长甲藻繁殖,因而庙岛群岛海域春季易引发赤潮。  相似文献   

3.
2016年夏季黄、渤海颗粒有机碳的分布特征及影响因素   总被引:1,自引:1,他引:1  
本文根据2016年6-7月黄、渤海航次获得的调查数据,分析了黄、渤海海域颗粒有机碳(POC)的浓度变化、空间分布特征并结合盐度、叶绿素a、POC/PON、POC/Chl a平面分布特征和相关性分析,探讨了黄、渤海海域POC的来源和影响因素。结果表明:2016年夏季渤海海域POC平均浓度(500.2±226.5)μg/L,北黄海POC平均浓度(358.2±101.5)μg/L,南黄海POC平均浓度(321.0±158.1)μg/L,渤海海域POC浓度高于黄海,整个海域POC浓度表层高于底层。POC的平面分布特征为近岸高,外海低。调查海域表层POC/PON均值为8.89,POC/Chl a均值为182.52;中层POC/PON均值为8.87,POC/Chl a均值为179.56;底层POC/PON均值为9.41,POC/Chl a均值为178.80。黄海海域浒苔衰败对POC/PON与POC/Chl a影响较大。相关性分析结果表明渤海海域盐度、总悬浮物和叶绿素a与POC存在显著的相关性,是影响POC分布的主要控制因素。南黄海除表层POC浓度与盐度、总悬浮物和叶绿素a浓度有很好的相关性外,中层和底层POC浓度与盐度、总悬浮物和叶绿素a浓度不存在显著的相关性。渤海海域POC主要受陆源和浮游植物共同影响,浮游植物是POC的主要贡献者,而黄海海域POC受长江冲淡水、黄海暖流、苏北沿岸流、生物活动和底层沉积物等多种因素影响,其中苏北近岸和青岛外海,有机碎屑为POC的主要贡献者。  相似文献   

4.
山东南部近海沉积物中碳、氮、磷的分布特征   总被引:4,自引:0,他引:4  
对山东近海31个站位表层沉积物中的总氮、总磷和总有机碳的含量和分布特征进行了研究。结果表明,总氮、总磷和总有机碳含量均较低,高值区主要分布在胶州湾及湾口和北部海域,总氮浓度范围为0.31~0.75mg/g,平均值为0.52mg/g,总磷浓度范围为0.18~0.32mg/g,平均值为0.24mg/g,总有机碳浓度范围为0.17%~0.49%,平均值为0.33%。相关性分析表明,总氮和总有机碳的相关性较好,总有机碳和总氮比值(TOC/TN)略高于Redfield比值,表明这两种生源要素的来源可能是一致的。  相似文献   

5.
文章基于2020年5月(春季)和10月(秋季)莱州湾近岸海域环境监测数据,研究无机氮(DIN)和活性磷酸盐(DIP)的营养盐空间分布特征,分析海水质量状况和富营养化状况,并完成营养盐与环境因子的相关性分析。研究结果表明:莱州湾海域春季DIN的浓度范围为0.115~1.830 mg/L,呈现近岸高于远岸、西部高于东部的分布特征;秋季DIN的浓度范围为0.009~2.070 mg/L,高值区位于黄河河口附近;春、秋季DIP的浓度范围分别为未检出~0.009 mg/L、0.000 4~0.012 9 mg/L,受我国“控磷”“限磷”等磷负荷消减政策的影响,DIP的浓度一直处于较低水平。受DIN浓度的影响,春、秋季分别有35.7%和30.7%的调查站位超第二类海水水质标准。春季有1.4%的调查站位处于轻度富营养化状态,位于小清河河口附近;秋季有1.6%的调查站位处于轻度富营养化状态,位于黄河河口附近;其他站位均未达到富营养化水平。莱州湾海域营养盐的分布特征与多种环境因子呈现明显的相关性,其空间分布受多因素影响。  相似文献   

6.
文章于2018年1月(冬季)、4月(春季)、7月(夏季)、10月(秋季)对我国考洲洋海域海水中的溶解氧(DO)、化学需氧量(COD)、无机氮(DIN)、活性磷酸盐(DIP)4个主要海水水质因子进行了综合调查。结果表明,4个水质因子DIP、DIN、COD、DO的平均浓度由高到低的季节变化分别为:冬季(0.058 mg/L)、春季(0.046 mg/L)、夏季(0.009 mg/L)、秋季(0.006 mg/L);冬季(0.465 mg/L)、春季(0.171 mg/L)、夏季(0.064 mg/L)、秋季(0.040 mg/L);夏季(1.57 mg/L)、冬季(1.26 mg/L)、秋季(1.22 mg/L)、春季(0.89 mg/L);冬季(11.70 mg/L)、夏季(7.41 mg/L)、秋季(7.36 mg/L)、春季(7.18 mg/L)。评价结果显示,春季和冬季主要超标因子为DIP和DIN,夏季超标因子为DIP,秋季水质因子均满足要求。同时,本研究利用单因子标准指数法、富营养化指数法和有机污染评价指数法对考洲洋地区水质状况进行评价并对其进行初步比较和分析,结果表明,3种方法在季节性变化上的评价结果基本一致(由高到低均为:冬季、春季、夏季、秋季),然而,同一季节不同评价方法的超标站位比例不同(单因子指数法:冬季占100%,春季占80%,夏季占10%,秋季则无;富营养化指数法:冬季占90%,春季占70%,夏季和秋季均为无;有机污染指数评价法:冬季和春季均占80%,夏季和秋季均为无),比较分析表明,3种评价方法具有不同的评价作用和适用性。  相似文献   

7.
据2016年胶州湾水质自动监测的数据结果,分析了水质变化趋势,并统计和评价其水质超标情况。结果表明:2016-04—11水质自动站海域溶解氧质量浓度和pH的日均值均达到二类海水水质标准,达标率为100%;活性磷酸盐年均值为0.023 mg/L,无机氮年均值为0.154 mg/L,以硝酸盐为主(64.9%);无机氮和活性磷酸盐超标率均为16.7%,而且集中在降雨量较大的8月、9月,营养盐指标超标基本与海泊河的淡水输入有关;叶绿素a质量浓度与溶解氧、pH和浊度呈显著正相关,浮游植物光合作用对该海域表层海水的水质参数影响较大;自动站监测和人工监测的营养盐在年际变化上呈现较一致的趋势,说明运用水质自动站监测该海域的营养盐变化趋势较为准确。  相似文献   

8.
河口营养盐基准制定过程中,基准值的确定以参照状态为基础。在选择参考点时,可以采用两种途径:一是历史数据分析,二是实际调查数据分析。本文以辽河口为例,主要应用频数统计分析法建立了辽河口营养物总磷(TP)、总氮(TN)、活性磷酸盐(PO~(3-)_4)、溶解无机氮(DIN)及响应指标叶绿素a(Chl-a)、溶解氧(DO)的参照状态。辽河口营养物总氮、总磷、溶解无机氮、活性磷酸盐的推荐基准值为1.11、0.037、0.77和0.004 7mg/L;响应指标叶绿素a、溶解氧的推荐基准值为0.011、5.73mg/L。研究结果旨在为中国开展系统的水质基准、标准的研究提供理论和方法借鉴。  相似文献   

9.
为探究南黄海和东海不同海域春季中华哲水蚤(Calanus sinicus)分布主要受何种环境因子影响及对各环境因子的响应差异,利用2020年春季南黄海海州湾至长江口以北海域和东海长江口海域、三门湾邻近海域、福建中部近岸海域调查数据,基于广义可加非线性模型(GAMs)分析了中华哲水蚤与环境因子的关系。结果表明:海州湾至长江口以北海域中华哲水蚤主要受温度、溶解氧、化学需氧量、Chl a、pH和氨氮的影响。其密度随着温度的增加呈一个波谷曲线变动,温度在14℃时密度最低;随着溶解氧的增加其密度呈一个波谷曲线变动,溶解氧含量在10 mg/L时中华哲水蚤密度最低;随化学需氧量增加其密度波动变化;随着Chl a浓度的增加其密度先下降再呈波动上升;随着pH的增加中华哲水蚤密度逐渐降低;随着氨氮浓度的增加中华哲水蚤密度逐渐增加。长江口海域中华哲水蚤主要受盐度、水深、化学需氧量和活性磷酸盐影响,随盐度和水深的增加其密度逐渐增加;随化学需氧量和活性磷酸盐浓度增加其密度逐渐降低。三门湾邻近海域中华哲水蚤主要受盐度、pH和透明度影响,随盐度的增加其密度逐渐增加;随pH的增加其密度逐渐降低;随透明度的增加其密度先...  相似文献   

10.
长江口外潮汐混合和低盐度羽流形成的泥沙锋和羽状锋对浮游植物与环境因子的空间分布具有重要控制作用。本研究依据 2019 年夏季长江口及邻近海域典型断面叶绿素 a (Chl-a) 浓度和环境因子的调查结果,以锋面为边界,探讨了不同区域 Chl-a 浓度与环境因子的分布特征及相互关系,以期深入了解锋面的生态效应。结果表明,在泥沙锋以内的近岸区域,水体垂直混合均匀;受长江径流输入和泥沙锋“屏障”作用影响,总悬浮物 (TSM) 和营养盐浓度最高,其中TSM为 220.0± 275.3 mg/L,溶解无机氮 (DIN)、溶解无机磷 (DIP) 和溶解硅酸盐 (DSi) 分别可以达到 94.7±21.2 umol/L、 0.85±0.33umol/L 和 95.3±22.6 umol/L;高浓度 TSM 引起显著的光限制效应,导致 Chl-a 浓度较低 (1.7 ±0.5 ug/L)。在羽状锋以外的区域,出现垂直层化现象;表层海水的 TSM 和营养盐显著降低,其中 TSM 为 5.1 mg/L,DIN、DIP 和 DSi 分别为1.0 umol/L、0.03 umol/L 和 2.4 umol/L;Chl-a浓度受到营养盐供应不足的影响,浓度仅为 0.2ug/L。高浓度的 Chl-a (7.5±4.1±g/L) 主要出现在泥沙锋和羽状锋之间的过渡区域,该区域营养盐得到长江径流与上升流的补充;同时,由于大量 TSM在泥沙锋快速沉降,缓解了水体的光限制效应,有利于浮游植物的生长和积累。研究结果验证了泥沙锋和羽状锋对 TSM 与营养盐的重要控制作用,这对于理解长江口及邻近海域藻类灾害高发区的成因具有科学参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号