首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
半封闭海湾的水交换数值模拟研究   总被引:2,自引:0,他引:2  
基于采用不规则三角网格和有限体积方法的FVCOM模式,建立半封闭海湾-湛江湾附近海域的三维潮汐潮流数值模型,通过验证,结果与观测数据符合良好,并在此模型基础上对湛江湾的水交换状况进行了数值模拟,将湛江湾划分成3个区域,针对各区域进行了水交换能力研究,研究结果表明:由于湛江湾内不同区域的地形和地理位置变化较大,使得湛江湾内不同区域交换能力相差较大,其中,靠近湛江湾出口处交换能力最强,特呈岛以北海域交换能力最弱,交换时间与物质的初始浓度无关,与投放时刻和外源强迫密切相关,在治理湛江湾环境时,应分区进行,注意选择污染物排放时间和位置。  相似文献   

2.
象山港水交换数值研究 Ⅱ.模型应用和水交换研究   总被引:21,自引:4,他引:21  
使用水平二维对流-扩散型水交换模式模拟研究了象山港的水交换,对不同区域的水交换控制机理作了初步探讨,象山港水交换状况与其控制机制的区域性变化很大。牛鼻水道至佛渡水道是一个潮流较强的潮通道;90%水交换周期为5天左右。象山港狭湾内水交换周期较长,湾顶处90%水交换的周期约为80天左右。  相似文献   

3.
采用三维水动力和水交换数值模型FVCOM,建立了渤海湾附近海域的水交换数值模型,经实测潮汐和潮流数据验证,模型结果良好,并通过模型对渤海湾的水交换过程进行了研究。结果表明,渤海湾海域总体水体交换率较低,水体半交换周期达323 d;渤海湾中部海域的水交换率相对较高,西北部海域和南部海域的水交换率较低,尤其是西南部海域,由于阻隔带的作用,水体交换能力最弱。因此,在进行污染物排放时,应注意选择污染物的排放位置和排放时间。  相似文献   

4.
胶州湾跨海大桥对海湾水体交换的影响   总被引:1,自引:0,他引:1  
跨海大桥的建设有利于环湾经济的发展,但桥墩入水不可避免地会对海湾内水动力和水交换造成一定的影响。本文以胶州湾为例,利用无结构网格有限体积海洋模型,建立了能够描绘胶州湾跨海大桥入海桥墩的高精度网格,构造了胶州湾及邻近海域的三维水动力模型,模拟了胶州湾建桥前后的潮(余)流结构。在此基础上,通过污染物示踪对比了胶州湾内污染物在建桥前后的对流扩散过程。模拟结果表明,大桥的建设对胶州湾南部大部分区域的影响较小,包括潮(余)流、水交换等方面;但对大桥北侧以及南侧靠近大桥一定范围内的区域有显著影响。大桥北侧潮致余流整体减小约2cm/s,靠近桥南侧的余流则由向北转为沿桥向东流动。由于大桥的影响,污染物在大桥北侧堆积,重点集中于桥北的红岛以西(Ⅰ区)沿岸区域以及红岛以东(Ⅱ区)大部分区域。其中,Ⅰ区建桥后的半交换时间增加了2.00d,Ⅱ区增加了2.04d。在减缓污染物扩散速率的同时,大桥也同样阻碍了径流输出的淡水向胶州湾南部的输运,使得桥北水体的盐度降低,有可能是造成近年来胶州湾冬季冰情加剧的原因之一。  相似文献   

5.
钦州湾水交换能力数值模拟研究   总被引:7,自引:0,他引:7  
基于普林斯顿海洋模式(Princeton Ocean Model,POM),以M2、S2、K1、O1、M4和MS4 6个分潮为驱动,建立了包含漫滩处理的高分辨率钦州湾水动力模式。与现场观测的数据对比表明,该模式能较好地刻画钦州湾的水动力特征。在此基础上建立了水质模型,模拟钦州湾的水交换过程。模拟结果表明:钦州湾水交换能力整体上较强,整个湾平均的水体半交换时间约为18 d,水体平均存留时间为45 d。空间分布上,钦州保税港区以南海域水交换能力最强,半交换时间小于1 d;沿着水道向北,水交换能力逐渐减弱;茅尾海中部半交换时间为26~28 d;茅尾海的东、西、北3个部分存在水交换滞缓区,半交换时间超过50 d。数值实验表明,采用漫滩技术对准确模拟钦州湾潮流速度和水交换能力非常重要,不考虑漫滩过程会低估钦州湾的潮流速度和水体交换能力。水平扩散系数对流速及交换时间都有影响,但影响有限。  相似文献   

6.
象山港水交换数值研究──Ⅰ.对流-扩散型的水交换模式   总被引:7,自引:2,他引:7  
以溶解态的保守性物质作为湾内水的示踪剂,建立了对流-扩散型的海湾水交换数值模型。数值模型使用参数化的方法把重力环流和潮振荡的垂向剪切作用的水平混合效应包纳在水平二维的示踪剂对流-扩散方程中。在空间网距较小时,模型的稳定性和守恒性均可满足海湾水交换研究的需要。  相似文献   

7.
龙口湾水动力特征及其对人工岛群建设的响应   总被引:1,自引:0,他引:1  
基于龙口湾及附近海域的水文实测资料,利用Mike21数学模型模拟了人工岛建设前后的潮流、波浪、纳潮量及水交换率等水动力特征,探讨了人工岛群建设对龙口湾水动力环境的影响。结果表明,人工岛建设显著改变了龙口湾潮流场特征及水体运动路径,湾内受到人工岛的阻挡,流速普遍减小,局部区域潮流运动形式由往复流变为旋转流,流向变化较大,余流形成多个涡旋;湾外由于堤头挑流作用导致局部区域流速增大且余流流速增大,潮流运动形式未发生明显改变。受人工岛的掩蔽作用,人工岛及附近区域的波浪有效波高普遍减小。龙口湾潮位出现北部最大潮差变小、南部最大潮差增大的格局,壅水作用导致人工岛内部水道潮差变化明显。人工岛建设直接占据了龙口湾海域面积,导致其纳潮量明显减小,水交换率呈现南部和北部增大、人工岛北侧以及内部水道减小的特征,人工岛造成的水动力环境的改变是影响水交换率变化的主要原因。人工岛群建设导致龙口湾内的潮流、波浪、纳潮量以及水交换等水动力特征减弱,是引起龙口湾水动力条件变化的根本因素。  相似文献   

8.
乐清湾水交换特征研究   总被引:4,自引:0,他引:4  
采用EFDC模式模拟研究了乐清湾水交换的三维过程和时空变化特征,并通过计算水示踪剂质量浓度分析水体置换过程。结果表明,乐清湾水交换主要是由鹿西岛两侧流入的外海水体与湾内水体的交换,以及乐清湾口门西侧附近的湾内水体与瓯江北口径流冲淡水之间的交换。从口门到湾顶,水交换能力差别较大。以最窄的连屿至打水山断面为界,以南水体1个月基本可以完全交换,而以北水体2个月后仍然无法交换至湾口水平。连屿至打水山断面以北地形复杂,岛屿较多,污染物主要通过岛屿间的潮汐汊道输运,断面的瓶颈效应也使得断面以北的水体交换能力稍弱。在口门附近90%以上的水体被外海置换所需时间不到5 d,而此时湾顶水质未有太大改变;15 d左右,80%湾内水体被外海水置换;90%湾内水体被置换仅需40 d;70 d时的水体置换率达97%。  相似文献   

9.
胶州湾水交换的数值研究   总被引:39,自引:4,他引:39  
基于一个成熟的水动力模型ECOM(Estuary Coastal Ocean Model),对胶州湾潮波系统及其驱动下的标识质点运移规律进行数值模拟。将胶州湾划分为6个区域,定量研究了整个海湾水的存留时间和不同区域水的交换能力,并指出流场结构对湾内水交换起了决定性作用。研究结果表明,湾内两余流涡对质点运动起阻碍作用,使得流入余流涡对的质点很难流出;海湾水交换有赖于初始投放时刻;东岸区域质点运移规律表明,东岸排污对前海旅游区和西岸养殖区均无很大影响。  相似文献   

10.
应用MIKE21建立莱州湾平面二维潮流模型,对港口工程建设前后莱州湾内潮流场进行数值模拟,研究不同工程岸线下莱州湾水动力特征。通过莱州湾的连续实测海流数据与模拟结果进行比较,可以看出两者趋势基本符合,说明该模型能较精确地反映该海域工程前后的潮流场分布情况。计算结果表明:潍坊港双堤建设后,堤身两侧潮流流速有所减小,堤头附近潮流流速明显增大,广利港规划方案实施后,位于新形成“湾”内的潮流流速均存在不同程度的减弱,而“湾”口潮流流速均增大;港口工程建设对潮流场的影响主要集中在工程邻近海域,由于潍坊港和广利港的布局占据了莱州浅滩至老黄河口南侧海域的近1/4,因此港口工程的实施对潮流场的影响还是明显存在的。  相似文献   

11.
胶州湾水交换及湾口潮余流特征的数值研究   总被引:5,自引:3,他引:5  
利用基于普林斯顿海洋模式建立的胶州湾及临近海域潮汐潮流数值模型,结合胶州湾口走航式声学多普勒海流剖面仪(ADCP)测流资料,研究了胶州湾口的潮(余)流特征,并在潮流模型的基础上耦合建立了水质模块,模拟了胶州湾的水交换过程。考虑M2,S2,K1,O1,M4和MS4六个主要分潮,胶州湾口潮流场的模拟与ADCP观测数据吻合较好。外湾口水道上的潮流非常强,大潮期间观测到201 cm/s的峰值流速。团岛岬角的两侧分别存在一个流向相反的余流涡旋,两涡旋在团岛附近辐合,形成了57 cm/s的离岸强余流。整个胶州湾平均水体存留时间为71 d,平均半交换时间为25 d。胶州湾水体交换能力在空间分布上有很大差异:湾口海域最强,向湾顶逐渐减弱。湾内存在两个弱交换区,分别位于湾的西-西南部和东北端,水体存留时间多超过80 d,湾西局部水域最长达120 d,而半交换时间也大多超过40 d。潮流场的结构、强度,以及与湾口距离的远近是造成湾内水交换能力空间差异的主要原因。  相似文献   

12.
天津海域围填海工程对渤海湾水交换的影响研究   总被引:1,自引:0,他引:1  
利用三维海洋数值模型FVCOM,进行渤海湾三维水动力和水交换数值模拟,经实测潮汐和潮流资料验证,模型模拟结果较好。然后采用该模型对渤海湾内的水体水交换能力进行定量研究。研究结果表明,在天津海域进行围填海工程之前渤海湾水体的半交换周期为300 d左右,围填海之后,水体半交换周期延长25 d,渤海湾西部水体的水交换率下降可达10%,半交换周期延长92 d。尤其是天津沿海南部海域的水交换能力下降严重,围填海之后其水体半交换周期延长可达200 d。渤海湾北部也有部分海域水交换周期延长达200 d。建议在进行围填海工程建设时,应将工程对水体交换能力的影响纳入考虑,避免因围填海工程因素造成的恶劣环境影响。  相似文献   

13.
三门湾春季温排水增温效应数值模拟研究   总被引:2,自引:0,他引:2  
采用ECOMSED模式和2012年5月份现场温盐、潮流以及气象观测资料,对三门湾核电站冷却水排放所致海水增温效应进行了数值模拟研究。结果表明,在近期工程建成后,三门湾海水增温范围主要出现在排水口附近,表层增温幅度最大,底层增温幅度最小,在月度时间内,表底层增温范围有大、小极值变化。在全部工程完成后,温排水量大幅提高,三门湾表层海水增温1℃的范围将稳定影响较大面积,4℃增温范围较小。在月度时间内,表底层增温范围大、小极值变化幅度也将增大。  相似文献   

14.
应用非结构网格有限体积海洋模型对平潭竹屿湾水交换能力和溢油扩散开展了数值模拟.水交换能力计算表明,竹屿湾大部分水域水体半交换时间小于1.0 d,平均滞留时间约3.0 d左右,水体冲洗时间为15.0 d,水交换能力较强. 48 h溢油扩散计算结果表明,油粒子扫海范围及运动路径与油粒子的释放时刻及风的作用紧密相关.静风条件...  相似文献   

15.
环抱式港池的水体交换能力强弱对港池的水质有重要影响,水体交换通道是改善港池水质的有效措施。本研究以闸坡渔港防波堤改造工程为例,采用不规则三角网格和有限体积方法,在潮流数模研究成果的基础上,建立平面二维对流-扩散数学模型,开展闸坡渔港扩建前后水体交换能力数值模拟研究,评估工程前后港内水体半交换周期和水体交换率。研究结果表明,闸坡渔港的水体交换能力较强,工程前水体半交换时间为129 h,工程后闸坡渔港水体半交换时间为104 h。工程后洲仔峡防波堤被改为涵洞式桥梁,使渔港与外海形成了水体交换通道,增加了港池内外水体相互作用和水体交换量,相应的水体交换能力增强。而港池外的两个水产养殖区域由于与外海相连,水体交换能力较强,工程前后该区域水体交换能力变化不大。  相似文献   

16.
On the basis of a numerical model of tidal current using Delft3D, the distribution of the semi - exchange time of water was simula- ted in the Yueqing Bay here. The result showed that the semi - exchange time was about more than 6 d in the bay end, and about 1~2 d in the bay mouth. Besides, based on the calculation of the semi - exchange time before and after the Xuanmen Dam pro- ject, a comparison between them was further carried out. And the same work was also done with the recent reclamation projects in the Yueqing Bay as well. The results showed that the change in semi - exchange time caused by the Xuanmen Dam project was a- bout 6 d increase near the dam and 4.5 d increase at the bay end. And it was about 5 d increase at the bay end and 1 d increase at the mouth of the bay caused by the recent reclamation projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号