首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
This paper presents new data on chromium mineralization in a fenitized xenolith in Mt. Kaskasnyunchorr in the Khibiny alkaline massif (Kola Peninsula, Russia) and summarizes data on Cr mineralogy in the Khibiny Mountains. Protolith silicates that contained Cr3+ admixture are believed to be the source of this element in the fenite. Cr-bearing (maximum Cr2O3 concentrations, wt %, are in parentheses) aegirine (5.8), crichtonite-group minerals (2.1), muscovite (1.3), zirconolite (1.1), titanite (1.0), fluorine-magnesioarfvedsonite (0.8), biotite (0.8), ilmenite (0.6), and aenigmatite (0.6) occur in the fenite. The late-stage spinellides of the FeTi-chromite-CrTi-magnetite series, which are very poor in Mg and Al and which formed after Crrich aegirine and ilmenite, are the richest in Cr (up to 42% Ct2O3). Cr concentrations grew with time during the fenitization process. Unlike minerals in the Khibiny ultramafic rocks where Cr is associated with Mg, Al (it is isomorphic with Cr), and with Ca, chromium in the fenites is associated with Fe, Ti, and V (with which Cr3+ is isomorphic) and with Na in silicate minerals. Cr3+ Mobility of Cr3+ and the unique character of chromium mineralization in the examined fenites were caused by high alkalinity of the fluid.  相似文献   

5.
The Vurechuaivench layered PGE-bearing pluton (VP) is located in the central part of the Kola Peninsula, at the southeastern contact of the Monchegorsk layered complex with the Paleoproterozoic Imandra-Varzuga rift structure. The VP is composed of gabbronorites with a layered horizon of intercalated gabbronorites and anorthosites, containing sulfide and PGE-bearing mineralization. The U-Pb (ID-TIMS) age of baddeleytte from gabbronorite of the ore zone (sample M-42) was determined on a Finningan MAT-262 (RPQ) seven-channel mass-spectrometer in the Laboratory of Geochronology at the Geological Institute, Kola Scientific Center, Russian Academy of Sciences. Zircons from anorthosites and gabbronorites of the ore zone (samples B-1 and B-2, respectively) were studied on a SHRIMP-II secondary-ionic microprobe in the Center of Isotopic Studies of the Federal State Unitary Enterprise VSEGEI (St. Petersburg). The reliable age of formation of various VP rocks was determined by single grains of accessory baddeleytte and zircon based on additional studies of sample M-42 (2498.2 ± 6.7 Ma) and new studies of samples B-1 and B-2 (2507.9 ± 6.6 and 2504.8.4 Ma). The identical U-Pb ages of anorthosites and gabbronorites from the ore reef indicate that anorthosites are a dependent phase and were formed along with gabbronorites during the intrachamber melt differentiation and crystallization.  相似文献   

6.
In the Kovdor massif, labuntsovite-group minerals occur in dolomite carbonatite veins (labuntsovite-Mg), in a natrolite-calcite vein (lemmleinite-Ba and labuntsovite-Fe), and in calcite pockets and veinlets cutting fenites (late labuntsovite-Mg). They are closely intergrown with paragenetic carbonates, and this makes it possible to estimate their crystallization temperature from the fluid inclusions entrapped in dolomite (≥265°C) and calcite (175–225°C). The earlier labuntsovite-Mg was formed under relatively acidic conditions, whereas later labuntsovite-calcite mineralization was derived from alkaline solutions.  相似文献   

7.
8.
9.
10.
11.
The Early Paleoproterozoic Monchegorsk Complex is exposed over an area of 550 km2 and comprises two layered mafite-ultramafite intrusions of different age: the Monchegorsk pluton of ultramafic and mafic rocks and the predominantly gabbroid Main Range Massif (also referred to as the Moncha-Chuna-Volch??i Tundras Massif), which are separated by a fault. Both massifs consists of intercalating cumulates (first of all, Ol ± Crt, Ol + Opx ± Crt, Opx, Opx + Pl ± Cpx, and Pl), they were produced by similar melts of siliceous high-Mg series but differ in the stratigraphy of their cumulates: while the Monchegorsk pluton is dominated by ultramafites, the Main Range Massif consists mostly of gabbroids, first of all, of gabbronorites. The complex is accompanied by PGE-Cu-Ni ore mineralization, low-sulfide Pt-Pd mineralization, and chromite mineralization. Judging from geological data and isotopic dates, the Monchegorsk Complex is a long-lived magmatic center, which evolved over a time span of 50 Myr at 2.50?C2.46 Ga. The Main Range Massif is younger and likely truncates the western continuation of the Monchegorsk pluton. The complex is spatially restricted to the zone of the Middle Paleoproterozoic regional Central Kola Fault and is now tectonic collage whose rocks were variably affected by overprinted metamorphism in the course of deformations. These processes most significantly affected rocks along the peripheries of the Monchegorsk pluton in the south. These rocks were completely transformed under greenschist-facies conditions but often preserved their primary textures and structures. The processes overprinted both the marginal portions of the pluton itself and the rocks of its second phase, which are accompanied by economic low-sulfide PGE deposits. The PGE-Cu-Ni ore mineralization of the Monchegorsk Complex is genetically related to two distinct evolutionary episodes with a quiescence period in between:
  1. The emplacement of large layered mafite-ultramafite intrusions at 2.5?C2.45 Ga. Economic deposits of sulfide Cu-Ni ores with subordinate PGE mineralization occur within the Monchegorsk pluton, and the moderate-grade low-sulfide PGE ores are related to its second evolutionary phase (in the foothills of Vuruchuaivench and in the Moroshkovoe Lake, and Southern Sopcha areas). The primary magmatic ore mineralization is predominantly Cu-Fe-Ni sulfide with PGE bismuthides-tellurides.
  2. The Monchegorsk Complex was involved in the zone of the Central Kola Fault at 2.0?C1.9 Ga and was broken in a collage of tectonic blocks. The rocks were sheared along the boundaries of the blocks and were affected by overprinted metamorphism, which proceeded under greenschist-facies conditions in the structures surrounding the Monchegorsk pluton in the south. Thereby the primary PGE-Cu-Ni ore mineralization underwent metamorphic processes was recrystallized with the formation of Pt-Pd arsenides, stannides, antimonides, selenides, etc. This processes was associated with the partial redistribution of PGE with their local accumulation (up to economic concentrations), and the orebodies themselves acquired diffuse outlines. In other words, the second episode was marked by the transformation of the older primary magmatic ore mineralization.
  相似文献   

12.
13.
14.
15.
16.
The investigation of the Kolvitsa gabbro-anorthosite massif showed that its melanocratic layers conformable with metamorphic banding are mafic differentiates transformed into eclogite-like rocks during prograde metamorphism. During the peak and retrograde stage of the Svecofennian metamorphism in the White Sea region at t = 910–750°C and P = 14-7 kbar, the infiltration of Fe-, CO2-, Si-, and Na-bearing fluids with XH2 O < 0.4X_{H_2 O} < 0.4 resulted in metasomatic alterations of the melanocratic gabbro-anorthosite interlayers, dissolution of a number of elements, and their reprecipitation with the formation of cross-cutting zoned metasomatic veins with abundant magnetite and ilmenite. The high content of hematite in the ilmenite suggests that the veins were formed at an increase in oxygen fugacity from logfO2 = - 14.5\log f_{O_2 } = - 14.5 to logfO2 = - 11\log f_{O_2 } = - 11, which caused the Fe2+ → Fe3+ transition and iron precipitation. The increase in at the conditions corresponding to the metamorphic peak was probably related to the neutralization of solutions during their infiltration through the gabbro-anorthosites. The reprecipitation of components and the formation of cross-cutting veins occurred owing to interaction between the melanocratic layers in the gabbro-anorthosites and a fluid phase and, contrary to previous models, did not involve the fluid transport of components from the zones of charnockite formation and granitization located far away from the sites of reprecipitation. This is demonstrated by the similarity of mineral compositions and major component contents in the melanocratic gabbro-anorthosite layers and cross-cutting metasomatic veins and regular distribution of trace elements.  相似文献   

17.
The paper presents results of petrochemical, geochemical, and isotope-geochemical study of the Patchemvarek and Severnyi gabbroanorthosite massifs of the Kola Peninsula. It was shown that the rocks of these massifs differ from the gabbroanorthosite massifs of the Neoarchean Keivy-Kolmozero Complex in the more calcic composition (70–85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fisken?sset Complex (Southwestern Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 2925 ± 7 and 2935 ± 8 Ma for the gabbroan-orthosites of the Patchemvarek and Severnyi massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Ce n = 2.2−4.2, Yb n = 1.6−2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Ce n = 1.2, Yb n = 1.1, La/Yb n = 1.3), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive εNd = +2.68 for the gabbroanorthosites of the Severnyi Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. Initial strontium isotope ratios are 87Sr/86Sr i = 0.70204 ± 8 and 87Sr/86Sr i = 0.70258 ± 8 for the rocks of the Severnyi and Patchemvarek massifs, respectively. Our study showed that the obtained U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severnyi massifs represent the oldest date for the Kola peninsula, thus marking the oldest, Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean gabbroanorthosites of the Keivy-Kolmozero Complex and the Mesoarchean gabbroanorthosites of the studied massifs suggest the existence of two mantle sources. One of them produced intrusions with an age of 2.67–2.66 Ga, while other was responsible for the formation of massifs with an age of 2.93–2.92 Ga. The composition and temperature of “parental” melt of the gabbroanorthosites were simulated using COMAGMAT-3.5 program. According to the calculations, the parental melt represented aluminous basalt, whose differentiation at T = 1280°C and P = 7 kbar at the crust-mantle boundary was accompanied by plagioclase floatation and formation of “crystal mesh” that produced anorthosite complexes. The gabbroanorthosies of the Patchemvarek and Severnyi massifs were presumably derived from MORB-type basalts of oceanic settings, while the Tsaga, Achinskii, and other anorthosite massifs of the Neoarchean age were generated from subalkaline magma formed in within-plate anorogenic setting. Sm-Nd isotope data suggest the existence of several mantle sources in the Kola region, which produced melts for different-age gabbroanorthosite massifs since Mesoarchean to the middle Paleoproterozoic. The Archean-Early Proterozoic anorthosite magmatism of the Kola region records a complete cycle (∼ 800 Ma) of the formation and consolidation of continental block.  相似文献   

18.
The Lovozero alkaline massif (Kola Peninsula, Russia) is composed of three major units. The central unit (80% of the volume) comprises numerous well developed layers composed, from bottom to roof, of an urtite–juvite–foyaite–lujavrite continuous lithological sequence (ijolite–foid-bearing alkali feldspar syenite in IUGS nomenclature). The mode of emplacement of the massif and the mechanism of formation of the layering are still under debate. Petrological, mineralogical (two stages of crystallisation) and structural evidence from the detailed analysis of one of these layers (unit II-7) is interpreted in terms of both mechanical (magmatic to sub-solidus, non-coaxial deformation) and thermal differentiation operating on a crystal-laden (alkali feldspar, high T nepheline, aegirine-augite) material of foyaitic composition. Textural and mineralogical data suggest that a sheet of foiditic magma intruded into solidified earlier units of the Lovozero layered sequence and acquired a sill-like structure on cooling.  相似文献   

19.
20.
The authors have studied the geology, geochemistry, petrology and mineralogy of the rare earth elements (REE) occurring in the Western Keivy peralkaline granite massif (Kola Peninsula, NW Russia) aged 2674 ± 6 Ma. The massif hosts Zr- and REE-rich areas with economic potential (e.g. the Yumperuaiv and Large Pedestal Zr-REE deposits), where 25% of ΣREE are represented by heavy REE (HREE). The main REE minerals are: chevkinite-(Ce), britholite-(Y) and products of their metamict decay, bastnäsite-(Ce), allanite-(Ce), fergusonite-(Y), monazite-(Ce), and others. The areas contain also significant quantities of zircon reaching potentially economic levels. We have discovered that behavior of REE and Zr is controlled by alkalinity of melt/solution, which, in turn, is controlled by crystallization of alkaline pyroxenes (predominantly aegirine) and amphiboles (predominantly arfvedsonite) at a late magmatic stage. Crystallization of mafic minerals leads to a sharp increase of K2O content and decrease of SiO2 content that cause a decrease of melt viscosity and REE and Zr solubility in the liquid. Therefore, REE and zirconium immediately precipitate as zircon and REE-minerals. There are numerous pod- and lens-like granitic pegmatites within the massif. Pegmatites in the REE-rich areas are also enriched in REE, but HREE prevails over light REE (LREE), about 88% of REE sum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号